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Abstract. Phylogenetic placement, the problem of placing a sequence
into a precomputed phylogenetic “backbone” tree, is useful for con-
structing large trees, performing taxon identification of newly obtained
sequences, and other applications. The most accurate current method,
pplacer, performs the placement using maximum likelihood but fails fre-
quently on backbone trees with 5000 sequences. We show a simple tech-
nique, pplacer-XR (pplacer-eXtra Range), that extends pplacer to large
datasets. We show, using challenging large datasets, that pplacer-XR pro-
vides the accuracy of pplacer and the scalability to ultra-large datasets of
a leading fast phylogenetic placmement method, APPLES. pplacer-XR
is available in open source form on github.

Keywords: Phylogenetic placement · Likelihood-based methods ·
Phylogenetics

1 Introduction

Phylogenetic placement is the process of taking a sequence (called a “query
sequence”) and adding it into a phylogenetic tree (called the “backbone tree”).
These methods are used for taxonomic identification, obtaining microbiome pro-
files, and biodiversity assessment [5–7,9,12,14]. Furthermore, phylogenetic place-
ment can be used to update very large phylogenies [2], where they offer a com-
putationally feasible approach in comparison to de novo phylogeny estimation
(which is NP-hard in most formulations).

One of the earliest methods for phylogenetic placement is pplacer [8], which
uses a maximum likelihood approach (as well as a Bayesian method) to add
query sequences into the tree. The input is a query sequence and a backbone
tree, as well as a multiple sequence alignment of the sequences at the leaves
of the backbone tree as well as the query sequence. The backbone tree is also
given with numeric parameters (branch lengths, substitution rate matrix, etc.)
for the selected sequence evolution model (e.g., the Generalized Time Reversible
model [16]). Given this input, pplacer finds the best edge (under the maximum
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likelihood criterion) in the backbone tree to attach the query sequence to, then
subdivides the edge and returns the enlarged tree as well as the updated branch
lengths, and a confidence score for the placements returned. EPA [4] was devel-
oped in 2011 with the same likelihood-based approach and accuracy, and was
replaced in 2019 by EPA-ng [3], an improved version of EPA. In 2020, Bala-
ban et al. [2] developed APPLES, a distance-based approach to phylogenetic
placement. Balaban et al. evaluated EPA-ng, pplacer, and APPLES on a range
of model conditions and revealed that while EPA-ng and pplacer provide high
accuracy (with pplacer more accurate than EPA-ng), only APPLES was able to
run on large backbone trees. Furthermore, pplacer, although the most accurate
of the three methods, was limited to backbone trees with only a few thousand
sequences, and often failed in [2] when the backbone tree had 5000 sequences.
When pplacer failed in [2], these occurred when pplacer was able to finish run-
ning but produced placements with confidence scores of −∞ (negative infinity).
We are also aware that pplacer has high memory requirements, as reported in
the github site for GTDB-tk [6]. Thus, pplacer, currently the most accurate
placement method available, may be limited to small backbone trees (unless,
perhaps, there is access to large amounts of memory), while APPLES, the most
scalable method, has reduced accuracy compared to both EPA-ng and pplacer.

To scale pplacer to larger datasets, we use the following strategy, which we
call “pplacer-XR” (pplacer-eXtra Range). Rather than attempting to find the
best location in the entire backbone tree into which we insert the query sequence,
pplacer-XR uses an informed strategy to select a subtree of the backbone tree,
places the query sequence into that subtree, and then identifies the correct loca-
tion in the backbone tree associated with that location. The first and third
of these steps involve using distances, and the middle step uses pplacer; hence
pplacer-XR is an extension of pplacer to enable it to run on larger backbone trees
(and is identical to pplacer on those backbone trees that are small enough for
pplacer to run). This approach is unique amongst placement methods, in that it
focuses on placement locally among a subset of taxa, rather than the perform-
ing statistical analysis on the entire set of sequences. Our experimental study,
using the datasets from the study presenting APPLES [2], shows that pplacer-
XR, although slower than APPLES, improves on the accuracy of APPLES and
matches its scalability. Our study also shows that pplacer-XR is more accurate
and also faster than EPA-ng (which, like pplacer, does not scale to large back-
bone trees). Thus, pplacer-XR is the most accurate of the existing phylogenetic
placement methods, and matches the scalability (but not the speed) of the most
scalable of these methods.

The remainder of the paper is organized as follows. In Sect. 2 we present the
pplacer-XR method. We describe the experimental study in Sect. 3. The results
of the study are presented in Sect. 4, and we close with a discussion in Sect. 5.

2 pplacer-XR

The input to pplacer-XR is (1) a backbone tree T with a set S of sequences
labelling the leaves, (2) a query sequence q, (3) a multiple sequence alignment A
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(of length k) that includes all of the sequences in S as well as the query sequence
q, and (4) a parameter B (to be the largest size that pplacer can reliably run on).
We describe pplacer-XR for a single query sequence, as placing a set of sequences
can be done independently. We also assume that the backbone tree is provided
with the numeric parameters (branch lengths, substitution rate matrix, etc., as
computed using RAxML [15]), associated with the specified sequence evolution
model. However, if the backbone tree does not have these numeric parameters,
we use RAxML to estimate the parameters (and will need to resolve the tree if
it is not binary before using RAxML). We assume that pplacer-XR is used to
add nucleotide sequences into a backbone tree under the GTR [16] model, but
we note that other models could be used without any important change to the
method. At a high level, our three-stage technique operates as follows:

– Stage 1: A subtree T ′ of T is identified (defined by its set S′ of leaves), with
the restriction that T ′ cannot contain more than B sequences (and we set
B = 2000 by default). This is referred to as the “placement tree”.

– Stage 2: We use pplacer to find the best edge e′ of T ′ for the query sequence.
– Stage 3: Since e′ may correspond to a path with more than one edge in T , we

use distances (estimated by pplacer) to find the correct edge of T into which
we add the query sequence.

Stage 1: A key issue in Stage 1 is how to set B, which limits the size of the
placement tree. In general, larger placement trees provide better accuracy (as
shown in [11]), but also run the risk of pplacer failing (due to the backbone
tree being too large) and will increase the running time. Hence, we have set
B = 2000, which is a size that pplacer reliably completes on. Note that if the
backbone tree is small enough (i.e., has at most B leaves), then pplacer-XR
defaults to pplacer; hence this algorithm only applies when the backbone tree
has more than B leaves.

In order to obtain a subtree most likely to contain the correct placement,
pplacer-XR uses a greedy strategy to find a set of B leaves in T that are close to
the query sequence. The first step is to find a closest leaf l (using the Hamming
distance to the query sequence, which is well defined since we are given a multiple
sequence alignment). Hence, this step takes O(nk) time.

Once that leaf l is found, pplacer-XR uses a breadth first search to find B−1
additional leaves, here based on the path length to the leaf l, defined as follows.
The path distance in T from a given leaf l′ to l is

∑
ei∈P L(ei) where P is the

path in T from l to l′ and L(ei) is the length of the edge ei in P . Starting from l,
we use a breadth-first search to select those leaves in T that have the lowest path
distance to l until we reach B leaves, and we return the subtree of T induced by
this set of leaves. Once the set of B leaves is identified, the induced subtree T ′ is
returned, with the branch lengths in T ′ computed by using the associated branch
lengths in T . Hence, Stage 1 takes O(nk) time, and returns a set of B leaves and
the induced subtree T ′ (with its associated branch lengths and other numeric
parameters), which will be the placement tree passed to pplacer in Stage 2.
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Stage 2: We then run pplacer on the placement tree T ′ we obtain from Stage 1.
This identifies an edge e′ in T ′, which will correspond to either a single edge e or
a path P (e′) of two or more edges in T . Since a single edge is vacuously a path,
we will let P (e′) denote the edge or path in T corresponding to e′. To determine
P (e′) given e′, note that e′ defines a bipartition π(e′) on T ′. At least one, and
possibly more than one, of the edges in T define bipartitions that are compati-
ble with π(e) (meaning specifically that they induce the same bipartition when
restricted to the leafset of T ′). The set of edges in T that define bipartitions
compatible with π(e′) form either a single edge or a path, and defines P (e′). We
then set L((e′) (i.e., the length of edge e′) to be L(P (e′)), where L(P (e′)) is the
sum of the branch lengths in the path (or edge) in T denoted by P (e′).

Stage 3: If e′ corresponds to a single edge e in T , then we place the query
sequence into that edge. However, if e′ corresponds to a path with two or more
edges in T , then we use the distances we obtained to find the correct placement
edge for the query sequence, as we now describe.

Recall that the tree T ′ is a subtree of T formed by specifying a set of leaves,
and that the edges of T ′ have branch lengths that correspond to the branch
lengths in T . Specifically, if an edge in T ′ also exists in T , then they have the
same branch length, and if the edge e′ in T ′ corresponds to a path P in T , then
the length of the edge e′ is the sum of the lengths of the edges in P . Recall also
that when pplacer inserts the query sequence into e′ in T ′, it also subdivides
the edge e′ and specifies how the branch length is divided. For example, suppose
e′ = (a, b) is an edge in T ′ with length L(e′), and the query sequence is attached
to this edge. Then pplacer subdivides the edge e′, thus creating two new edges
(a, v) and (v, b), whose lengths add up to L(e′). We then use those new lengths
to determine exactly what edge in T we should insert the query sequence into,
and how to divide the length of that edge to produce the desired outcome.

3 Experimental Study Design

Overview. We used simulated datasets from [2] to explore pplacer-XR in com-
parison to other phylogenetic placement methods. In these analyses, the available
sequences were evolved down a model tree and backbone trees were constructed
on these sequences. Thus, query sequences (also generated in the simulation) can
be added into the backbone trees using phylogenetic placement methods. The
true tree on every subset of the sequences is therefore known, and so error pro-
duced by a phylogenetic placement method can be exactly quantified. We used
the leave-one-out approach from [2] to evaluate accuracy. Specifically, Balaban
et al. [2] provided 200 query sequences for each model condition they studied.
Given query sequence q, we extract the leaf for q from the initial backbone tree,
thus producing the reduced backbone tree which we denote by T . We then use
the placement method to insert q into T , thus producing a tree with the same
set of leaves as the initial backbone tree.
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Fig. 1. Description of the pplacer-XR technique. In Stage 1, we select the placement
subtree T ′ from the backbone tree T , for a specified query sequence. To find the place-
ment subtree T ′ of T, we first find the leaf l with the smallest Hamming distance to
the query sequence (here called the “sister taxon”). Then, we greedily pick the B − 1
leaves (here B = 6) that have the smallest path distance to l (using branch lengths to
define path distances). In this case, we select five leaves O,P,S,U,V, and the placement
subtree T ′ is induced by the set {P, O, S, U, V, l} of six leaves. Here we show pplacer
selecting an edge in T ′ separating leaves {P, O} from {S, U, V, l}, and this single edge
in T ′ corresponds to a path of three edges in T . Note that pplacer returns not only
which edge in the placement subtree to insert the query sequence into, but the branch
lengths on either side; this is used to find the correct placement of the query sequence
in Stage 3.

Because pplacer has already been established in [2] to be the most accurate
method when it can run and because pplacer and pplacer-XR are the same
when pplacer can run, we only explore results on datasets that are too big
for pplacer. Therefore, we selected the larger backbone trees from the study
by Balaban et al. [2] to evaluate pplacer-XR. Specifically, we examine a set of
“variable size” backbone trees with 5000 to 200,000 leaves, each a subset of the
RNASim [10] million-sequence simulated dataset (which evolved under a complex
biophysical model that includes selection). The backbone trees for these datasets
were estimated using FastTree2 on the RNASim alignments.

We compare pplacer-XR to EPA-ng v0.3.8 using the default settings under
the GTR model [16] with the Γ model of rate variation [17], and APPLES v1.3.0
run using its default settings. We ran all analyses on the University of Illinois
Campus Cluster, which limits all analyses to four hours. Therefore, any analyses
that did not complete within four hours were marked as “failures”.

Backbone Trees and Branch Lengths. We use the RNASim variable size datasets
studied in Balaban et al. [2], with the same backbone trees (topologies and branch
lengths), alignments, and query sequences. These variable size datasets have
backbone trees computed on the true alignment using FastTree2 [13] and contain
5,000, 10,000, 50,000 and 100,000 leaves (each with five replicates) and 200,000
(one replicate). We use the query sequences provided in [2] for each backbone
tree; each such tree has 200 query sequences, which are drawn from the backbone
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tree, and thus are in the original RNAsim dataset. The true alignment for the
RNASim dataset, modified to remove the sites with more than 95% gaps, is
provided to all phylogenetic placement methods. Balaban et al. computed branch
lengths on all the backbone trees using protocols specific to each placement
method (e.g., FastME for APPLES and RAxML for EPA-ng and pplacer); we
use their backbone trees and branch lengths for EPA-ng and APPLES, and use
the same command for RAxML to compute branch lengths for pplacer-XR as
they used for pplacer.

Performance Criteria. We report placement error using the “delta error”, as
used by Balaban et al. [2] (described below). We also report the running time,
recognizing that since the methods were run on a heterogeneous system (the
University of Illinois Campus Cluster), these are not exactly comparable.

The delta error is defined using the concept of “false negatives”, which we
now define. Note that every edge in an unrooted tree t defines a bipartition on
its leafset, and the set B(t) of these bipartitions defines the tree t. Now let T ∗

denote the true tree on n leaves and let T denote a tree estimated on a subset
L of n − 1 of the leaves of T ∗. We can restrict T ∗ to the leaves L of T , and
denote this tree by T ∗|L. Then, the false negatives of the estimated tree T with
respect to the true tree T ∗ are the bipartitions in B(T ∗|L) \ B(T ). When we
insert a query sequence into tree T we obtain a tree P with one additional leaf
(and hence the same number of leaves as T ∗); the number of false negatives can
therefore go up or stay the same, but cannot decrease. This means that the delta
error is always non-negative. It is, however, possible for the delta error to be 0
without any of the estimated trees being correct (e.g., imagine the case where the
backbone tree is not identical to the true tree, but the query sequence is correctly
placed, perhaps as the sibling to another leaf; in such a case, the delta error will
be 0 although the backbone tree before and after placement has errors). Put
formally, the delta error produced by adding the missing query sequence into
the backbone tree T (which is lacking one leaf) to obtain tree P is

Δe(P ) = |B(T ∗)\B(P )| − |B(T ∗|L)\B(T )|. (1)

We report the average and maximum delta error as well as the number of place-
ments with a delta error of 0.

4 Results

All three methods were run on all datasets. APPLES and pplacer-XR success-
fully completed on all datasets, including the analyses with backbone trees con-
taining 200,000 leaves. However, results with EPA-ng on backbone trees of size
50,000 were not obtained for just over 800 placements due to a core dump while
running. This seemed to be a result of memory limitations, rather than time lim-
itations. As a result, for the backbone trees larger than 10,000 taxa pplacer-XR
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is compared only to APPLES. All other placement methods (except EPA-ng)
were able to complete within the 4-hr time limit.

Fig. 2. Delta error (means plus standard error) over of all placements for each method
over five backbone tree sizes. Averages for the 5,000, 10,000, 50,000, and 100,000 taxa
trees are over all 1,000 query sequence placements, and for the 200,000 taxa tree the
averages are for 200 query sequence placements. EPA-ng was unable to run for trees
larger than 10,000 taxa and so no results are reported for EPA-ng on those datasets.
This was run on the UIUC Campus Cluster with 64 GB of memory per placement and
4 h time limit.

4.1 Query Placement Accuracy

Figure 2 and Table 2 show that the mean delta error was significantly lower for
the pplacer-XR than for APPLES and EPA-ng. EPA-ng was more accurate than
APPLES on those datasets on which it completed, but could only reliably com-
plete on the 5000- and 10,000-sequence backbone trees. The delta error results
indicate that for all methods the accuracy improves as the backbone tree size
increases, suggesting that denser taxon sampling improves phylogenetic place-
ment accuracy. However, for every backbone tree size, APPLES has 2–3 times
the mean delta error of pplacer-XR.

Figure 3 and Table 3 show the maximum delta error in each dataset, which
corresponds to the placement with the highest delta error in that set. Note that
pplacer-XR has lower maximum delta error than EPA-ng and APPLES, and
APPLES has the highest maximum error (specifically, pplacer-XR has maximum



Phylogenetic Placement Using pplacer-XR 101

Fig. 3. Maximum delta error over of all placements for each method over five backbone
tree sizes. Averages for the 5,000, 10,000, 50,000, and 100,000 taxa trees are over all
1,000 query sequence placements, and for the 200,000 taxa tree the averages are for
200 query sequence placements. EPA-ng was unable to run for trees larger than 10,000
taxa and so no results are reported for EPA-ng on those datasets. This was run on the
UIUC campus cluster with 64 GB of memory per placement and 4 h time limit.

error of 3, while EPA-ng and APPLES have a maximum delta error of 8 and 19
respectively.

Finally, Fig. 4 and Table 1 shows the fraction of times that the query is
optimally placed (so that delta error is 0); here, too, pplacer-XR outperforms
APPLES and EPA-ng, with APPLES having poorer results than EPA-ng.

Table 1. Fraction optimally placed query sequences on backbone trees of size n

n = 5000 n = 10,000 n = 50,000 n = 100,000 n = 200,000

pplacer-XR 0.858 0.872 0.919 0.918 0.925

EPA-ng 0.781 0.787 X X X

APPLES 0.770 0.785 0.846 0.838 0.875

4.2 Time Analysis

One advantage of distance-based APPLES over maximum likelihood placement
methods is generally improved runtime [2]. This can be seen in the results from
Fig. 5 and Table 4. For the trees with 5,000 taxa, pplacer-XR is able to place
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Fig. 4. Fraction of placements with a delta error of zero over of all placements for
each method over five backbone tree sizes. Averages for the 5,000, 10,000, 50,000, and
100,000 taxa trees are over all 1,000 query sequence placements, and for the 200,000
taxa tree the averages are for 200 query sequence placements. EPA-ng was unable to
run for trees larger than 10,000 taxa and so no results are reported for EPA-ng on
those datasets. This was run on the UIUC campus cluster with 64 GB of memory per
placement and 4-h time limit.

in half the time of EPA-ng, but takes approximately ten times as much time as
APPLES. On trees of 10,000 taxa, the runtime difference between EPA-ng and
pplacer-XR grows further to over 3 times the speed, but pplacer-XR is now just
8.3 times slower than APPLES. On the largest tree of 200,000 taxa, pplacer-XR is
only 2.7 times slower than APPLES, suggesting the significant speed advantage
of APPLES (and potentially other distance-based methods) degrades as the
backbone tree size increases. However, on these tree sizes, pplacer-XR was never
as fast as APPLES. Finally, EPA-ng was not able to run on the 200,000-taxon
backbone tree due to memory limitations and is not shown.

Table 2. Average delta error (Δe) in backbone trees of size n

n = 5000 n = 10,000 n = 50,000 n = 100,000 n = 200,000

Δe

pplacer-XR 0.150 0.132 0.085 0.084 0.075

EPA-ng 0.239 0.219 X X X

APPLES 0.366 0.330 0.239 0.247 0.250
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Table 3. Maximum delta error (eMax) on backbone trees of size n

n = 5000 n = 10,000 n = 50,000 n = 100,000 n = 200,000

eMax

pplacer-XR 2 3 2 2 1

EPA-ng 8 2 X X X

APPLES 10 8 13 19 13

Fig. 5. Average time of all placements for each method over three backbone tree sizes.
Averages for the 5,000- and 10,000-taxon trees are over all 1,000 query sequence place-
ments, and for the 200,000-taxon tree the averages are for 200 query sequence place-
ments. EPA-ng was unable to run for trees with 200,000 taxa. This was run on the
UIUC campus cluster with 64 GB of memory per placement and 4 h time limit.

Table 4. Average placement time in seconds on backbone trees of size n

n = 5000 n = 10,000 n = 200,000

pplacer-XR 20 25 185

EPA-ng 42 92 X

APPLES 2 3 67

5 Conclusions

We have presented pplacer-XR, a technique that uses pplacer, the most accurate
placement method, as a step inside a three-stage process for phylogenetic place-
ment. As this study shows, pplacer-XR matches the scalability of APPLES (to
our knowledge, the only previous placement method able to perform phyloge-
netic placement on ultra-large backbone trees with 200,000 leaves), but improves
on its accuracy. We also show that pplacer-XR improves on the accuracy, speed,
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and scalability of EPA-ng, the previous most scalable likelihood-based placement
method. Thus, pplacer-XR is an advance in phylogenetic placement methods for
large placement trees.

This study suggests several directions for future work. The main advantage of
APPLES over pplacer-XR is speed, where APPLES is definitely better (roughly
half to one-third the running time of pplacer-XR). Thus, future work should
examine ways to reduce the running time for pplacer-XR. It is also possible that
changes to the algorithmic design (e.g., how the placement subtree is defined)
could improve the accuracy of pplacer-XR. A major limitation of this study is
that we only explored phylogenetic placement when given the true alignment of
the query sequences to the backbone sequences and where the query sequences
were full length; hence, future work should evaluate the case where the input
query sequences are short (perhaps with sequencing errors) and unaligned to the
backbone sequences. Another direction for future work is to modify pplacer-XR
to handle multiple queries at the same time, a capability that EPA-ng is specifi-
cally designed to handle. Finally, we note that APPLES2 [1], an improvement on
APPLES, has just been developed, and future work should compare pplacer-XR
to APPLES2.
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Appendix

Commands to create backbone trees: All placement methods use the same back-
bone tree topologies, but have different branch lengths (following the protocol as
provided in [2]). We downloaded the backbone trees with their optimized branch
lengths for each phylogenetic placement method from the APPLES repository.

On replicates 1 and 2 of the 100,000-leaf backbone condition and replicate 0
of the 200,000-leaf replicate backbone condition, each containing more than two
identical sequences, the backbone trees had polytomies. We randomly resolved
these in order to run RAxML.
Random tree refinement: raxmlHPC-PTHREADS -f e -t res true.fasttree -m
GTRGAMMA -s aln dna.phy -n REF -p 1984 -T 16
APPLES command: run apples.py -t backbone.tree -s ref.fa -q query.fa -T 16 -o
apples.jplace
EPA-ng command: epa-ng –ref-msa ref.fa –tree backbone.tree –query query.fa
–outdir $query –model RAxML info.REF8 –redo -T 16
pplacer-XR commands: python3 pplacer-XR.py GTR RAxML info.REF back-
bone.tree output dir aln.fa query.txt 2000
Github site: https://github.com/chry04/pplacer plusplus

https://github.com/chry04/pplacer_plusplus
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