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ABSTRACT

Phylogenetic placement, the problem of placing a “query” sequence into a precomputed
phylogenetic “backbone” tree, is useful for constructing large trees, performing taxon iden-
tification of newly obtained sequences, and other applications. The most accurate current
methods, such as pplacer and EPA-ng, are based on maximum likelihood and require that
the query sequence be provided within a multiple sequence alignment that includes the
leaf sequences in the backbone tree. This approach enables high accuracy but also makes
these likelihood-based methods computationally intensive on large backbone trees, and can
even lead to them failing when the backbone trees are very large (e.g., having 50,000 or
more leaves). We present SCAMPP (SCAlable alignMent-based Phylogenetic Placement),
a technique to extend the scalability of these likelihood-based placement methods to ultra-
large backbone trees. We show that pplacer-SCAMPP and EPA-ng-SCAMPP both scale
well to ultra-large backbone trees (even up to 200,000 leaves), with accuracy that improves
on APPLES and APPLES-2, two recently developed fast phylogenetic placement methods
that scale to ultra-large datasets. EPA-ng-SCAMPP and pplacer-SCAMPP are available at
https://github.com/chry04/PLUSplacer.
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CHAPTER 1: INTRODUCTION

Phylogenetic placement is the process of taking a sequence (called a “query sequence”)
and adding it into a phylogenetic tree (called the “backbone tree”). These methods are
used for taxonomic identification, obtaining microbiome profiles, and biodiversity assessment
2, 3, 4, 5, 6, 7]. Furthermore, phylogenetic placement can be used to update very large
phylogenies [8], where they offer a computationally feasible approach in comparison to de
novo phylogeny estimation (which is NP-hard in most formulations).

Phylogenetic placement based on optimizing the maximum likelihood score is a natural
approach, and is employed in pplacer [9], EPA [10], and EPA-ng [11] (an improved version of
EPA). These likelihood-based phylogenetic placement methods have generally been found to
have excellent accuracy but can be computationally intensive, due to their use of likelihood
calculations. Another limitation of likelihood-based placement methods is that they depend
on multiple sequence alignments, which can reduce their applicability and also increase the
computational effort in using the methods.

Other phylogenetic placement methods have been developed that enable potentially greater
scalability and speed. RAPPAS [12] and App-SpaM [13] both focus on placement for un-
aligned query sequences. RAPPAS in particular shows promise in scalability to large back-
bones since it uses k-mers. However, both App-SpaM and RAPPAS were reported as being
less accurate than pplacer [12, 13]. APPLES [8] is a distance-based approach to phyloge-
netic placement that has shown particularly good scalability, including to backbone trees
with up to 200,000 sequences. APPLES-2 [14], a new version of APPLES, has subsequently
been developed using a divide-and-conquer strategy to substantially improve upon the ac-
curacy and speed of APPLES while maintaining its scalability. However, although APPLES
and APPLES-2 can both scale to very large backbone trees, the maximum likelihood-based
placement methods provide better accuracy on those datasets on which they can run [14].

Thus, maximum likelihood phylogenetic placement methods have accuracy advantages
over alternative approaches, but many studies have restricted these methods, such as pplacer,
to relatively small backbone trees due to a combination of reasons, including limitations in
computational resources and potentially numeric issues (see further discussion in Chapter
5. Of the other methods, APPLES-2 may be the most scalable and perhaps most accurate
method, but has reduced accuracy compared to pplacer and has not been extensively stud-
ied. In particular, APPLES-2 has not been examined for accuracy in placing fragmentary
sequences.

To enable pplacer, EPA-ng, and other computationally intensive likelihood-based phy-



logenetic placement methods to be used on larger backbone trees, we have developed the
SCAMPP framework, which we now describe. Rather than attempting to find the best lo-
cation in the entire backbone tree into which we insert the query sequence, the SCAMPP
framework uses an informed strategy to select a subtree of the backbone tree, places the
query sequence into that subtree using the selected placement method, and then identi-
fies the correct location in the backbone tree associated with that location. Using the
SCAMPP framework with pplacer yields pplacer-SCAMPP and similarly, EPA-ng yields
EPA-ng-SCAMPP, but any standard phylogenetic placement method that uses aligned se-
quences can be used within SCAMPP. The SCAMPP framework thus extends the provided
phylogenetic placement method to enable it to scale to larger backbone trees and does not
change the method when the backbone tree is small enough. This approach to phylogenetic
placement focuses on placement locally within a subtree of the backbone tree, rather than
searching the entire backbone tree for where to place the query sequence.

Our experimental study, using both biological and simulated datasets, shows that the
SCAMPP framework enables pplacer and EPA-ng to be used with large backbone trees
and maintains their accuracy on those datasets on which the placement methods can run,
while reducing runtime and peak memory usage. A particular outcome of our study is
that EPA-ng-SCAMPP and pplacer-SCAMPP can place into backbone trees with 200,000
leaves with accuracy that improves on APPLES-2, the prior leading method for phylogenetic
placement on large backbone trees. Furthermore, although APPLES-2 remains generally
the fastest of these methods, the difference in running time between pplacer-SCAMPP and
APPLES-2 is relatively small on the largest datasets, and pplacer-SCAMPP is faster than
APPLES-2 when placing fragmentary sequences into the largest backbone trees. Thus, the
SCAMPP framework not only enables alignment-based phylogenetic placement methods to
scale gracefully to large datasets, but its use with pplacer provides the best accuracy of all

the existing phylogenetic placement methods we explore.



CHAPTER 2: THE SCAMPP FRAMEWORK

2.1 OVERVIEW

The SCAMPP framework is designed to work with a provided phylogenetic placement
method @, under the following basic assumptions about ®. The input to ® is (a) 7,
the “backbone tree”, which is an unrooted binary tree with numeric parameters (including
branch lengths) for its specified model of sequence evolution, (b) a set @ of query sequences,
and (c) a multiple sequence alignment of the sequences at the leaves of the tree and the
query sequences.

For each query sequence, ® returns an output jplace file [15], consisting of multiple possible
placement edges within the tree, each with a corresponding distal length, likelihood weight
ratio, likelihood, and pendant branch length. The output can be used to identify a single
edge into which the query sequence should be placed, as well as to produce support statistics
about edge placements. The statistical support values are useful for metagenomic taxon
identification and abundance profiling (e.g., as used in TIPP [4] and TIPP2 [5]). However,
the output of the single best placement is also relevant when using phylogenetic placement
for the purpose of incrementally building a large tree, as discussed in [8].

In this study, we focus on the use of phylogenetic placement to identify a single best edge
within the backbone tree for a single query sequence; this is an application that can be used
both for adding sequences into very large trees (e.g., incrementally building a gene tree) as
well as for taxon identification.

Here we describe the SCAMPP framework for use with any given phylogenetic placement
method ®, when placing a single query sequence from (); we note that inserting all the
sequences in ) can be performed independently, and so this description will suffice to de-
fine the framework. We also describe the SCAMPP framework for the Generalized Time
Reversible (GTR) [16] model for nucleotide evolution with gamma-distributed rates across
sites, noting that modifications to this approach for other models (e.g., protein models) is
trivial. The input to the SCAMPP framework has two algorithmic parameters, which are ¢
(the phylogenetic placement method) and B, the maximum size for the placement subtree.
The remaining parameters are the usual ones given to likelihood-based placement methods,

and are:

e T, an unrooted tree with numeric substitution model (e.g., GTR) parameters (e.g.,
branch lengths, substitution rate matrix, stationary distribution, gamma distribution),

with S the set of sequences labelling the leaves of T’



e ¢: the query sequence to be inserted into T’
e A: the multiple sequence alignment on S U {¢}

When we use SCAMPP with @, we refer to the combination as ®-SCAMPP: hence, EPA-
ng-SCAMPP refers to using SCAMPP with the EPA-ng phylogenetic placement method,
pplacer-SCAMPP refers to using SCAMPP with pplacer, etc. At a high level, our three-
stage technique for ®-SCAMPP operates as follows (see Figure 2.1):

e Stage 1: A subtree 7" of T is identified (defined by its set S’ of leaves), with the
restriction that 7’ cannot contain more than B leaves. This is referred to as the

“placement tree”.

e Stage 2: We apply ® to T"”; this returns a jplace file with the set of the edges selected
by @ for having good likelihood scores for the query sequence.

e Stage 3: For each edge ¢’ in the jplace file, we find the associated edge e in T

The output is therefore a jplace file containing all the potential placement edges and their
associated likelihood scores. We study the SCAMPP framework in the context of finding
the single best placement, but the output can be used more generally.

In what follows, we will assume that the backbone tree has n leaves and that the sequence

alignment has length k.

2.2 STAGE 1

The input to Stage 1 includes the value for B, which defines the size of the placement
subtree, as well as the backbone tree T'. Note that if the backbone tree is small enough
(i.e., has at most B leaves), then the SCAMPP framework just defaults to the selected
phylogenetic placement method; hence this algorithm only applies when the backbone tree
has more than B leaves.

The first stage needs to select the subtree of B leaves into which to place the query
sequence. The first step is to find a closest leaf [ (defined by the Hamming distance, which is
number of sites where the two sequences are different (i.e., both have different letters or one
is gapped and the other is not). This is modified when the query sequence is identified as a
fragment by the user, in which case the calculation is performed after removing the leading
and trailing gaps. This calculation takes O(nk) time. We call this closest leaf the “nearest

taxon” to the query sequence.



Stage 1 Stage 2 Stage 3

Backbone Tree T Backbone Tree T (

Subtree T'

Figure 2.1: Description of the SCAMPP technique. In Stage 1, we select the placement
subtree T” from the backbone tree T, for a specified query sequence. To find the placement
subtree T of T, we first find the leaf [ with the smallest Hamming distance to the query
sequence (called the “nearest taxon”). Then, we greedily pick the B — 1 leaves (here B =
6) with the smallest distance to . In this case, we select five leaves O,P,S,U,V, and the
placement subtree 7" is induced by the set {P, O, S, U, V, 1} of six leaves. Here we show the
given placement method selecting an edge in 7" separating leaves {P, O} from {S,U,V, [},
and this single edge in T” corresponds to a path of three edges in T. Note that a viable
phylogenetic placement method for the SCAMPP framework returns not only which edge in
the placement subtree to insert the query sequence into, but the branch lengths on either
side; this is used to find the correct placement of the query sequence in Stage 3.

Once the leaf [ is found, we select the B — 1 leaves in order of their path distance to [, as
we now define. The path distance in T from a given leaf I’ to [ is ), _p L(e;) where P is
the path in 7" from [ to I’ and L(e;) is the length of the edge e; in P. Starting from [, we
use a breadth-first search to select those leaves in T that have the lowest path distance to [
until we select the B — 1 additional leaves (thus forming the set of B leaves, after we add [).
Once the set of B leaves is identified, the induced subtree 7" is returned, with the branch
lengths in 77 computed by using the associated branch lengths in 7' (note that this subtree
T" may not be a clade in T').

Stage 1 takes O(nk) time, and returns a set of B leaves and the induced subtree 7"
(with its associated numeric parameters, induced on it by the backbone tree), which is the
placement tree passed to a phylogenetic placement method in Stage 2. Therefore Stage 1
is polynomial time. Moreover it is computationally efficient. However the runtime and the
accuracy depends on the value of B, which we evaluate in this study. As we will see later

there is a wide rage of values for B that work quite well.



2.3 STAGE 2

We then run the given phylogenetic placement method on the placement tree 7" we obtain

from Stage 1. This identifies a collection of edges, each of which has a good likelihood score.

24 STAGE 3

For each edge €' found in Stage 2, we find the single edge e in T' corresponding to that
edge. To do this, we first determine the set of edges in T" that define the same bipartition
as €. This set will either be a single edge e or will define a path of two or more edges
in T. Figure 2.1 shows such an example of how an edge ¢’ in the placement subtree 7"
corresponds to a path with more than a single edge from the given backbone tree T. We
let Path(e’) denote the edge or path in T' corresponding to €/, noting that a single edge
is also a path (albeit of length 1). To determine Path(e’) given €', note that e’ defines a
bipartition 7(e’) on T”. At least one, and possibly more than one, of the edges in T" define
bipartitions that correspond to 7(e) (meaning specifically that they induce the same bipar-
tition when restricted to the leafset of T7"). The set of edges in T that define bipartitions
corresponding to m(e’) form either a single edge or a path of two or more edges, and so
defines Path(e’). We then set L(€') (i.e., the length of edge €’) to be L(Path(e’)), where
L(Path(e")) is the sum of the branch lengths in the path (or edge) in T" denoted by Path(e’).

If ¢’ corresponds to a single edge e in T, then we place the query sequence into that edge.
However, if €’ corresponds to a path with two or more edges in 7', then we use the distances
we obtained to find the correct placement edge for the query sequence, as we now describe
and also show in Figure 2.1.

Recall that the tree T” is a subtree of T' formed by specifying a set of leaves, and that
the edges of T" have branch lengths that correspond to the branch lengths in 7". Recall also
that when a phylogenetic placement method inserts the query sequence into ¢’ in 7", it also
subdivides the edge ¢’ and specifies how the branch length is divided. For example, suppose
¢/ = (a,b) is an edge in 7" with length L(e’) and the query sequence is attached to this edge.
Then the given phylogenetic placement method subdivides the edge €/, thus creating two
new edges (a,v) and (v,b), whose lengths add up to L(e’). We then use those new lengths
to determine exactly what edge in 7" we should insert the query sequence into and where
in that edge we should create a new node (to which we attach the query sequence) so as to
produce the lengths specified by the phylogenetic placement method. An example of this

is provided in Figure 2.1, and another more complex example is provided in Appendix A.



CHAPTER 3: EXPERIMENTAL STUDY

3.1 OVERVIEW

Recall that SCAMPP has two algorithmic parameters: the phylogenetic placement method
® and the value for B, which is the maximum size (i.e., number of leaves) of the placement
subtree. In our first experiment we explore how to set B within SCAMPP for use with
® being either pplacer or EPA-ng. After selecting B, we use that value in all subsequent
experiments. The second experiment compares pplacer-SCAMPP and EPA-ng-SCAMPP to
other phylogenetic placement methods on backbone trees with up to 78,000 leaves, also for
placing full-length sequences. The third experiment explores larger backbone trees with up
to 200,000 leaves, and explores placement of full-length as well as fragmentary sequences.
All methods were evaluated with respect to delta error [8, 17] (a measure of how much tree
error increases by adding a query sequence) as well as running time and peak memory usage
within a leave-one-out experiment.

All our analyses were performed in the same computational infrastructure (the Campus
Cluster at the University of Illinois), which provides 64GB of memory, 18 CPUs, and up
to 4 hours of runtime. Additional details of the methods, including version numbers and

commands, are provided in Section 3.6.

3.2 METHODS

We evaluate EPA-ng-SCAMPP (v1.0.0) and pplacer-SCAMPP (v1.1.0) in comparison to
APPLES (v1.1.3), APPLES-2 (v2.2.0), EPA-ng (v0.3.8), and pplacer (v1.1.alphal9).

3.3 DATASETS

3.3.1 Overview

For our experiments we use five nucleotide datasets, with three biological and two simu-
lated (Table 3.1). These datasets have alignments and reference trees (true alignments and
true trees for the simulated datasets and estimated alignments and trees for the biological
datasets) that range in size from roughly 5000 sequences to as large as 200,000 sequences.
We use the two smallest datasets, both biological datasets from the PEWO collection [18],
for Experiment 1, where we set the algorithmic parameter B (which determines the size of

the subtree used in the SCAMPP framework); the other datasets are used in Experiments
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2 and 3 for evaluating the impact of the SCAMPP framework. We also made versions of
these datasets where the sequences are fragmentary. All datasets are available in public
repositories, with locations provided at https://tandy.cs.illinois.edu/datasets.html. We now

describe these datasets in greater detail.

Table 3.1: Dataset Statistics— The first column gives the name of the dataset and the
publication describing the dataset. For each dataset we show the number of sequences, the
length of the reference alignment, its type (biological or simulated), the mean and maximum
p-distance (i.e., normalized Hamming distances) between pairs of sequences in the alignment,
and the proportion of the alignment that is gapped.

Dataset # of | alignment Type p-distance | p-distance | gaps

seqs. length mean maximum | prop.
green85 [18] 5088 1486 biological 250 A79 146
LTP_s128 SSU [18] || 12,953 1598 biological 228 468 .090
16S.B.ALL [19] 27,643 6857 biological 210 .769 118
nt78 [20] 78,132 1287 simulated 404 .639 .006
RNASim [21] 200,000 1620 simulated 410 .618 .051

3.3.2 Biological Datasets

We have three biological datasets, two from the PEWO [18] collection and one from the
Comparative Ribosomal Website [19]. The first PEWO dataset is the green85, originally
from the Greengenes database [22], of 5088 aligned sequences and a reference tree that was
computed on the alignment. The second PEWO dataset is LTP_s128 SSU, which contains
12,953 aligned sequences and a reference tree originally from [23, 24]. The final biologi-
cal dataset is 16S.B.ALL, which contains 27,643 sequences with an alignment based on
secondary structure [19] and a RAXxML [25] maximum likelihood tree [25].

3.3.3 Simulated Datasets

We have two collections of simulated datasets. The first is the nt78 dataset, which contains
78,132 nucleotide sequences. This simulated dataset was created to evaluate the maximum
likelihood method, FastTree 2 [26]. This dataset contains 20 simulated replicates, and we
arbitrarily chose the first for this study. We generate an estimated tree for phylogenetic

placement using FastTree 2 for this study.



The second collection comes from the RN ASim dataset, which is a simulated dataset with
ten replicates, each containing 1,000,000 sequences. The RNASim dataset is the result of a
simulation where sequences evolve under a complex biophysical model that reflects selective
pressures to maintain the RNA secondary structure. RNASim has been used in other studies
to evaluate alignment accuracy [21, 27, 28, 29]. The RNASim Variable Size (RNASim-VS)
datasets are subsets of varying sizes (up to 200,000 sequences), drawn at random from the
million-sequence RNASim dataset. These RNASim-VS datasets were used in [14] to evaluate
phylogenetic placement methods, and provide true phylogenetic tree, true multiple sequence
alignment, and estimated maximum likelihood (ML) trees (obtained using FastTree 2 [26])
on each subset, which serve as the backbone trees. For each backbone tree size there are
five replicates included in [8] (except for the largest which contains only one), and 200 query

sequences per replicate.

3.3.4 Fragmentary Datasets

For Experiment 3, we created fragmentary versions of the RNASim datasets as follows.
We created “low fragmentation” (LF) conditions where a quarter of the sequences are frag-
mentary (mean 25% of the original length, with a standard deviation of 60 nucleotides). We
picked a random starting position within the randomly selected sequence, selected a random
number L from a normal distribution with mean 25% the original length and standard de-
viation of 60, and extracted the next L nucleotides. “High fragmentation” (HF) conditions
were also simulated in a similar manner, with a mean 10% of the original length with a
standard deviation of 10 nucleotides. The resulting mean fragment length is 154 for the
HF conditions and 385 for the LF conditions. The true alignments of resulting sequence

fragments are used for placement.

3.3.5 Backbone Trees and Numeric Parameters

The phylogenetic placement methods need backbone trees with numeric parameters (branch
lengths, substitution rate matrix, stationary distribution, and gamma distribution), with
specific protocols for each method. It is recommended that APPLES-2 uses branch lengths
estimated under minimum evolution [8, 14|, and APPLES-2 will estimate these branch
lengths using FastTree-2 prior to performing placement. In order to provide fair runtime
analyses we provide APPLES with a tree estimated by FastTree-2 with the no ML option
for all datasets. We used the minimum evolution branch lengths provided by [8] for use
with APPLES and APPLES-2 on the RNASim-VS datasets, and for all other datasets we



estimated these using FastTree-2 [20]. For EPA-ng and EPA-ng-SCAMPP, we re-estimated
branch lengths for each estimated ML tree using RAxML-ng [30]. For pplacer-SCAMPP,
on the RNAsim dataset we used trees with branch lengths estimated by FastTree 2 [26].
For pplacer-SCAMPP on all other datasets we estimated branch lengths using RAxML. The
remaining parameters (i.e., 4 x 4 substitution rate matrix) across all datasets were estimated
using RAXxML [25] version 7. For pplacer we used the branch lengths and numeric param-
eters directly from RAxML version 7. However, pplacer failed to provide valid results on
some large backbone trees using the numeric parameters produced by RAxML. Therefore,
on those backbone trees where pplacer produced negative infinite likelihood scores using
the default technique for numeric parameter estimation, we produced numeric parameters
using an alternative technique recommended in [14]: we computed numerical parameters
using FastTree 2 and then provided these parameters to taxit within Taxtastic [31]; this
produced numeric parameters that we then used with pplacer. See Section 3.6 for additional

information.

3.4 LEAVE-ONE-OUT STUDY

Our leave-one-out evaluation operates as follows. Given a backbone tree on n leaves, a
random leaf is selected and removed, thus producing a reduced tree on n — 1 leaves. The
sequence for that leaf is then added back into the reduced tree using the given phylogenetic

placement method.

3.5 CRITERIA

We report running time, peak memory usage, and placement error. For running time
and peak memory usage, we report results on the University of Illinois Campus Cluster. In
our analyses, each phylogenetic placement was given one node with 64 Gb of memory and
allowed at most 4 hours to complete. Nevertheless, the machines vary in age and speed, and
running times are not exactly comparable.

We report placement error by comparing trees, before and after a single query sequence
is added to the backbone tree, to the true tree (when using simulated datasets) or a reliable
estimated tree (when using biological data) on the corresponding set of leaves. We will
refer to the true tree or reliable estimated tree as the “reference tree”. This comparison is
performed by representing each tree by its set of bipartitions, noting that each edge in a

tree defines a bipartition on the leafset. We define the “false negative” error (also called
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the number of “missing branches”) of a given tree ¢ with respect to the reference tree to be
number of edges (or bipartitions) that are in the reference tree but not in ¢. The change in
the number of false negatives produced by placing a query sequence into a backbone tree is
the “delta error” produced by the placement method.

We illustrate this calculation with an example. Suppose the backbone tree has leafset
S and is missing 5 edges found in the true tree on this leafset. Now suppose we use a
phylogenetic placement method to add a new sequence s’ into the tree, so that the extended
backbone tree now has leaves S U {s'}, and suppose this extended tree is missing 7 edges
from the true tree on S U {s'}. Then the delta error is 2, since the number of edges that
were missing went up by 2. Note that the delta error can never go down, since an edge that
is missing before s’ is added is still missing after s’ is added.

We now make this concept precise using mathematical notation. Given a tree Y we let
B(Y') denote the set of bipartitions of Y. We let T* denote the reference tree (i.e., either the
true tree or a reliable estimated tree), and we assume 7™ has leafset S. In a leave-one-out
study, we are given a tree t and we delete one leaf s’ from ¢, thus producing a tree T on
leafset S" = S\ {s'}. Note that the tree ¢ may not be the reference tree. When we add
query sequence s’ into T', we obtain a tree P. Note that P has the entire leafset S. We let
T*|s denote the subtree of T* induced by leafset S”. Then the delta error for P, denoted by
A.(P), is given by the following formula:

Ae(P) = |B(T)\B(P)| — |B(T"|s)\B(T)], (3.1)

where | X| denotes the number of elements in the set X. Thus the first term is the number
of false negatives for the tree P and second term is the number of false negatives for the tree
T. Note that A.(P) > 0, since the number of missing branches produced by adding a query
sequence to a tree cannot decrease.

We note that several earlier studies [11, 18, 32] have used the “node distance” to evaluate
phylogenetic placement methods within leave-out studies, as follows. A starting tree is
given and a leaf is deleted, and then reinserted using a placement method. The distance
(i.e., number of nodes) from the final placement to the placement in the starting tree is the
node distance. However, this is equal to the delta error when the starting tree is interpreted
as the true tree. Therefore, the delta error is an extension of the node distance that allows
error in the starting tree (which can be quantified in a simulation study) to be part of
the evaluation. Therefore, throughout our experiments, we use the delta error for both
simulated and biological datasets, with the trees provided for the biological datasets treated

as reference trees. (In other words, when we report delta error on the biological datasets, it

11



is the same as reporting node distance for these datasets.)

3.6 ADDITIONAL DATASET INFORMATION AND COMMANDS

3.6.1 Additional Dataset Setup

The LTP_s128_SSU dataset was first converted from RNA to DNA.
We estimated an ML tree on the first replicate of the nt78 dataset using FastTree-2 with

the following command:

e FastTreeMP -nosupport -gtr -gamma -nt -log true.fasttree.log < alignment.fasta >

true.fasttree

3.6.2 Numeric Parameter Estimation for Backbone Trees

For all datasets the fasta formatted alignments were converted to phylip and numeric
parameters were estimated according to the specific recommendations of each phyloge-
netic placement method. Thus, pplacer recommends RAxML v7.2.6, EPA-ng recommends
RAxML-ng, and APPLES and APPLES-2 recommend the use of balanced minimum evo-
lution branch lengths as computed by FastTree. On one dataset (LTP_s128_SSU), pplacer
failed to return valid output using the recommended techniques for calculating numeric pa-
rameters and returned -inf values; therefore, for this dataset we re-estimated the numeric
parameters using FastTree v2.1.11, as described below. However, when running pplacer-
SCAMPP or EPA-ng-SCAMPP, we used the software recommended by its base method.
Here we provide the commands we used.

In order to place with pplacer and pplacer-SCAMPP RAxML (v7.2.6) was used to estimate

branch lengths and substitution rates with the following command:

e raxmlHPC-PTHREADS -f e -t reference.nwk -m GTRGAMMA -s alignment.phylip -n
REF -p 1984 -T 16

For pplacer-SCAMPP on the RNAsim VS datasets we used the FastTree branch lengths
available in [33]. For pplacer-SCAMPP on all other datasets we compute RAXML (v7.2.6)
provided branch lengths. All other numerical parameters (e.g. 4x4 substitution rate matrix)
were from with RAXxML (v7.2.6) on all datasets, we used those available in [33] for RN Asim,
and computed the rest using the command above.

For EPA-ng and EPA-ng-SCAMPP, RAxML-ng (v1.0.2) was used to estimate branch

lengths and model parameters with the command:
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e raxml-ng —evaluate —tree reference.nwk —-model GTR+G ~msa alignment.phylip -seed

1984

APPLES-2 will re-estimate branch lengths under minimum evolution, however to obtain
a fair runtime and memory usage analysis we handled this ahead of the placement step.
So APPLES-2 and APPLES were run using a tree with re-estimated branch lengths, as

suggested in [14], using the following command for large trees under minimum evolution:

e FastTreeMP -nosupport -nt -nome -noml -log fasttree_me.log -intree reference.nwk <

alignment.fasta > tree_me.nwk

The only dataset for which we deviated from the above procedure of obtaining backbone
trees was on LTP_s128 SSU. On this dataset, pplacer failed using the RAxML (v7.2.6)
estimated branch lengths and statistics file, producing -inf likelihood scores. To resolve this,
in accordance with the reported procedure in APPLES-2, we re-estimated the branch lengths
with FastTree-2 and used taxtastic to build a reference package to run pplacer with.

The FastTree-2 command was:

e FastTreeMP -nt -gtr -nome -mllen -log fasttree.log -intree reference.nwk < align-

ment.fasta > fasttree.nwk

In order to package this with taxtastic [31] for each leave-one-out experiment, we used the
following command on the FastTree-2 newick file with the query pruned and internal parent

node removed:

e taxit create -P my.refpkg -1 locus_name —aln-fasta ref.fa —tree-file fasttree.nwk —tree-

stats fasttree.log

On the nt78 dataset, we did not follow this procedure as the failure was due to memory
problems (segmentation fault) and not the -inf likelihood scores obtained in LTP _s128_SSU

dataset.

3.6.3 Phylogenetic Placement Commands and Delta Error Script

The following commands were used for running each phylogenetic placement method.

e APPLES (v1.1.3)
python run_apples.py -t backbone.tree -s ref.fa -q query.fa -T 16 -o apples.jplace
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e APPLES-2 (v2.2.0)
python run_apples.py -t backbone.tree -s ref.fa -q query.fa -T 16 -o apples-2.jplace -D
-X-£0.2-b 25

e EPA-ng (v0.3.8)
epa-ng —ref-msa ref.fa —tree backbone.tree —query query.fa —outdir output_dir —model
RAxML.bestModel ~redo -T 16

e pplacer (vl.1.alphal9)
./pplacer -m GTR -s RAxML_info.REF -t backbone.tree -o pplacer.jplace

alignment.fasta -j 1

e pplacer (vl.l.alphal9) on LTP 8128 SSU
./pplacer -m GTR -c¢ my.refpkg -o pplacer.jplace alignment.fasta -j 1

e pplacer-SCAMPP (v2.0.0)
python pplacer-SCAMPP.py -i RAxML_info.REF -t backbone.tree -d output_dir -a

msa.fa -b subtree_size

e EPA-ng-SCAMPP (Note: EPA-ng-SCAMPP is not enabled in Version 1.0.0)
python EPA-ng-SCAMPP.py -i RAxML.bestModel -t backbone.tree -d output_dir -a

msa.fa -b subtree_size

Commands used for placement of fragmentary sequences with pplacer-SCAMPP and EPA-
ng-SCAMPP used the fragmentary sequences option (“-f True”), which ignores (masks)
leading and trailing gaps in the alignment.

The script used for the delta error computation was originally published with the data in
[34].
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CHAPTER 4: RESULTS

Results for Experiments 1-3 are shown here for APPLES-2, EPA-ng, pplacer, EPA-ng-
SCAMPP, and pplacer-SCAMPP. APPLES was clearly inferior to APPLES-2 with respect
to runtime, memory usage, and accuracy, and the results for APPLES are thus described

separately in Section 4.4.

4.1 EXPERIMENT 1: DESIGNING THE SCAMPP FRAMEWORK

An important algorithmic parameter is the size B of the subtree into which the query
sequence is placed, and exploring this question is the main focus of this section. Previous
studies have suggested that better placement accuracy is obtained by placing into a larger
subtree [4, 17], indicating that the best placements may be obtained by increasing the value
of B, which limits the placement subtree size given to the phylogenetic placement method.
However, increasing the placement subtree size too much also increases the computational
effort, and may also lead to failures in some cases.

In order to understand the impact of B, which determines the placement subtree size, we
used two relatively small PEWO datasets (green85 with 5088 sequences and LTP_s128 SSU
with 12,953 sequences) and tested a range of subtree sizes. We see (Figure 4.1) that small
values for B (which limit the placement to small subtrees) produced high error, but values for
B generally between 1000 and 4000 had good accuracy (with very small differences between
B = 1000 and B = 4000). However, as subtree sizes increased, runtime and memory usage
also increased. Based on these trends, we performed a more focused evaluation of settings
for B in the range between 1000 and 4000.

In Figure 4.2, we compare pplacer-SCAMPP and EPA-ng-SCAMPP to the other phylo-
genetic placement methods using these three values for B to get a sense for how important
it was to set B optimally. We examine the impact on placement error first, and then the
impact on runtime and memory usage.

On the smaller of these two datasets (i.e., green85, with only 5088 sequences), we see
that EPA-ng is slightly more accurate than EPA-ng-SCAMPP when B = 1000 or B = 2000
and then matches accuracy when B = 4000. This suggests that EPA-ng is able to provide
a good analysis of the full dataset and that B = 4000 is slightly better than B = 2000.
In contrast, for all settings of B, pplacer is clearly less accurate than pplacer-SCAMPP,
and there is little difference between pplacer-SCAMPP for B = 2000 and B = 4000. This

suggests that pplacer is unable to provide good accuracy on the full dataset and benefits from
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restriction to a subtree, and that B = 2000 is as good as B = 4000. Results on the larger of
the two datasets (i.e,, LTP_s128 SSU) are somewhat different than on the smaller dataset.
First, all methods except for APPLES-2 have very low placement error, with average delta
error below 1. In addition, there are very small differences the remaining methods, and
changes to B on this dataset does not have much impact. Across the two datasets, setting
B = 2000 or B = 4000 are both reasonable settings, with B = 2000 somewhat better for
pplacer-SCAMPP and B = 4000 somewhat better for EPA-ng-SCAMPP.

A comparison of running time provides additional insights about how to set B. Specifically,
increasing B increases the running time for both pplacer-SCAMPP and EPA-ng-SCAMPP,
and has a larger impact on pplacer-SCAMPP than on EPA-ng-SCAMPP. In addition, pplacer
has by far the highest running time (see for example runtime on the LTP_s128_SSU dataset)
and EPA-ng is in second page, but setting B = 2000 in pplacer-SCAMPP or EPA-ng-
SCAMPP greatly reduces the runtime. Furthermore, changing B from 2000 to 4000 ap-
proximately doubles the runtime for both pplacer-SCAMPP and EPA-ng-SCAMPP. Thus,
B has a large impact on runtime, as expected.

The peak memory usage by pplacer-SCAMPP and EPA-ng-SCAMPP is also very impacted
by the setting for B. On the green85 dataset, the lowest peak memory usage is achieved by
both methods when B = 1000, and then increases substantially with increases in B. The
highest peak memory usage is for pplacer, followed by EPA-ng in second place, and every
explored setting for B reduces their peak memory usage. On the LTP s128 SSU dataset, the
same trends appear, but with the following difference: here, EPA-ng has by far the highest
peak memory usage (more than three times that of every other method).

Overall, what these trends show is that the different settings for B between 1000 and 4000
result in at worst small changes to the placement error but very large changes to runtime and
memory usage. If placement accuracy must be optimized, then these results suggest that
the optimal setting for B when using pplacer-SCAMPP is probably 2000, but the optimal
setting when using EPA-ng-SCAMPP is possibly B = 4000 (but B = 2000 produces very
close results). However, the computational hit (both running time and memory usage) in
changing from B = 2000 to B = 4000 is substantial for both methods. Based on these
experimental results, we set B = 2000 for default usage with both pplacer-SCAMPP and
EPA-ng-SCAMPP, and used this setting in the subsequent experiments. In addition we
looked at the impact of the size of the parameter B on two additional datasets. These
datasets are used for the comparison of methods, and were not considered and included
when selecting a default for the parameter B. The results are shown in Section 4.5. In short
those results indicate that the impact of the selection of B on those datasets does follow

similar trends, and also indicate that a substantial gain in accuracy occurs once the size of
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the parameter B is at least 2000.

4.2 EXPERIMENT 2: EVALUATING SCAMPP ON MODERATELY LARGE TREES

This experiment examines phylogenetic placement on two moderately large backbone trees,
using the setting for B established in Experiment 1. We analyze the 16S.B.ALL biological
dataset (with 27,643 sequences) and the nt78 simulated dataset (with 78,132 sequences). We
see different trends for each of these datasets, and so we discuss them separately, starting
with the smaller of the two datasets.

On the 16S.B.ALL dataset (Figure 4.3(a)), we see that APPLES-2 has double the delta
error of the other methods. The most accurate method is EPA-ng, with delta error of
4.4, but the delta errors of the remaining methods are all between 5.3 and 5.4, and have
overlapping error bars with EPA-ng. There are substantial differences in terms of running
time, with APPLES-2 by far the fastest and pplacer by far the slowest. EPA-ng is the second
slowest. In contrast, pplacer-SCAMPP and EPA-ng-SCAMPP (which are nearly identical
in running time) are nearly as fast as APPLES-2. The methods also differ substantially with
respect to memory usage, with APPLES-2 the best, followed closely by pplacer-SCAMPP
and EPA-ng-SCAMPP, and then by EPA-ng and pplacer, which have about the same (large)
memory usage. Specifically, SCAMPP enables a large reduction in peak memory usage for
both pplacer and EPA-ng, from over 30Gb to under 3Gb on this dataset.

Results on the 78nt dataset (Figure 4.3(b)) show somewhat different trends. The first
and most significant difference is that neither pplacer nor EPA-ng were able to perform the
placements. On this dataset both pplacer and EPA-ng failed to return a jplace file due
to segmentation faults (see Chapter 5). The comparison between the remaining methods
shows APPLES-2 less accurate than EPA-ng-SCAMPP and pplacer-SCAMPP, and with a
small advantage to EPA-ng-SCAMPP. The three methods are again distinguishable in terms
of runtime and memory usage, with APPLES-2 the fastest and using the least memory.
A comparison between EPA-ng-SCAMPP and pplacer-SCAMPP shows pplacer-SCAMPP
slower than EPA-ng-SCAMPP but using less memory.

4.3 EXPERIMENT 3: EVALUATING SCAMPP ON VERY LARGE TREES

Here we explore performance of phylogenetic placement methods when the backbone trees
are very large, using the RNASim-VS datasets with backbone trees ranging from 50K to

200K leaves. There are five replicates each for trees with 50K and 100K leaves and only one
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Figure 4.1: Experiment 1: Exploring the impact of how B is set, which specifies the place-
ment subtree size, on two PEWO biological datasets (LTP_s128_SSU and green85). Within
each row the subfigures for pplacer-SCAMPP and EPA-ng-SCAMPP show: Mean delta error
(left), Mean time in seconds (center), and Mean peak memory usage in Gb (right). Rows
(from top to bottom) show results on green85 and LTP _s128_SSU.
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Figure 4.2: Experiment 1: Results of phylogenetic placement methods on the two PEWO
datasets (green85 and LTP_s128_SSU), using B = 1000, B = 2000, and B = 4000. Within
each row the subfigures show: Mean delta error (left), Mean time in seconds (center), and
Mean peak memory usage in Gb (right).

replicate with a tree of 200K leaves. For this study, we do not use either pplacer or EPA-ng,

as they fail to complete on the nt78 dataset, as shown in Experiment 2.

4.3.1 Experiment 3a: Scalability in Placing Full-Length Sequences

Placement error results on these data present interesting trends (Figure 4.5(c)). On the
backbone trees with 50,000 leaves, pplacer-SCAMPP has the lowest placement error, followed
by EPA-ng-SCAMPP, and then by APPLES-2. On the 100,000-leaf backbone trees, pplacer-
SCAMPP again has the lowest error, and APPLES-2 and EPA-ng-SCAMPP have the same
higher error. Results on the 200,000-leaf backbone tree show the same relative trends as on
the 100,000-leaf backbone trees, but error rates have dropped somewhat for all methods.

A comparison of methods with respect to running time and memory usage is also in-
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Figure 4.3: Experiment 2: Results of phylogenetic placement methods on moderately large
backbone trees. Within each row the subfigures show: Mean delta error (left), Mean time in
seconds (center), and Mean peak memory usage in Gb (right). Rows (from top to bottom)
show results on 16S.B.ALL and nt78. On the nt78 dataset, we do not show pplacer and
EPA-ng because both fail to return valid results.

teresting (Figure 4.5(c)). APPLES-2 is clearly the fastest of the three methods, followed
by EPA-ng-SCAMPP and then by pplacer-SCAMPP. Furthermore, EPA-ng-SCAMPP and
APPLES-2 are not very far apart in terms of runtime on the 100,000-leaf tree and then
identical in running time on the largest tree with 200,000 leaves. Memory usage also clearly
favors APPLES-2, and the differences between EPA-ng-SCAMPP and pplacer-SCAMPP are

very small.

4.3.2 Experiment 3b: Scalability of Fragmentary Sequence Placement

We examined two lengths for the fragmentary sequences: short fragments, averaging 154
nucleotides, and slightly longer fragments, averaging 385 nucleotides. We refer to the shorter
sequence condition as HF (high fragmentary) and the slightly longer fragments as LF (low

fragmentary).
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Results on the short fragments show very clear trends (Figure 4.5(a)). First, APPLES-2
has substantially higher delta error than pplacer-SCAMPP and EPA-ng-SCAMPP for all
backbone tree sizes, and the difference between pplacer-SCAMPP and EPA-ng-SCAMPP
is very small. All three methods have essentially the same running time for backbone tree
size 50,000 but differences appear as the backbone tree size increases so that APPLES-2
becomes the slowest of the three methods. EPA-ng-SCAMPP and pplacer-SCAMPP have
close runtimes, with pplacer-SCAMPP slightly slower than EPA-ng-SCAMPP on backbone
tree size 100,000 and then faster on backbone tree size 200,000. APPLES-2 and pplacer-
SCAMPP both have relatively low peak memory usage at all sizes (though APPLES-2 uses
more peak memory than pplacer-SCAMPP on the larger backbone trees), and EPA-ng-
SCAMPP has by far the highest peak memory usage.

Results on the longer fragments show very similar trends, but with a few differences (Fig-
ure 4.5(b)). As with the short fragments, APPLES-2 is the least accurate, and differences
between pplacer-SCAMPP and EPA-ng-SCAMPP are minor (though there is a small ad-
vantage to pplacer-SCAMPP over EPA-ng-SCAMPP on the largest backbone size). The
same basic trends hold for running time, except that pplacer-SCAMPP is the slowest of
the three methods until the largest backbone size, where it is faster than APPLES-2 but
slightly slower than EPA-ng-SCAMPP. Peak memory usage is also slightly different, but
EPA-ng-SCAMPP is still by far the most memory-intensive.

Some other trends are also worth noting. First, delta error rates drop with increases in
the backbone tree size, while runtime increases. The increase in runtime is expected, but
the decrease in delta error is surprising, and worth further investigation. Interestingly, peak
memory usage is fairly constant as the backbone tree size increase for EPA-ng-SCAMPP,
but grows for pplacer-SCAMPP and for APPLES. The impact of backbone tree size on peak
memory usage for APPLES-2 follows from its algorithm design, but the differential impact
on pplacer-SCAMPP and EPA-ng-SCAMPP is somewhat surprising and worth further in-
vestigation. We also see that error rates are higher on the short fragments than on the long

fragments, which is also expected (since there is less information available for placement).

4.3.3 Impact of Query Sequence Length

We evaluated the impact of query sequence length using the RNASim-VS datasets with
50K to 200K sequences. As seen in Figure 4.4, query sequence length has a different impact
on different phylogenetic placement methods. Specifically, delta error increases as sequence
length decreases for all methods, but the increase is higher for APPLES-2 than for EPA-ng-
SCAMPP or pplacer-SCAMPP. In addition both maximum likelihood methods within the
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Figure 4.4: Experiment 3: Impact of query sequence length on very large backbone trees.

SCAMPP framework, EPA-ng-SCAMPP and pplacer-SCAMPP, had similar losses in delta

error as the query sequence length decreased.

4.3.4 Computational Scalability of pplacer-SCAMPP

We finish this section with a direct evaluation of how well pplacer-SCAMPP scales in terms
of runtime and memory usage, by comparing runtime and memory usage on the RNASim-VS
datasets for both full-length and fragmentary sequences. The runtime of pplacer-SCAMPP
is close to linear in the size of the backbone tree (Figure 6.2), and a detailed evaluation of the
runtime of each step (Table 6.1) shows that the time used by pplacer itself is constant across
all backbone tree sizes. We similarly see that the peak memory usage does not increase
with backbone tree size (Figure 4.5), suggesting that the maximum likelihood phylogenetic
placement method is likely the process where the memory usage peaks, because the place-
ment tree within the backbone tree remains a fixed size within our experiments. Overall, the
computational scalability of pplacer-SCAMPP is very good on these datasets, and suggests

the potential for being scalable to even larger backbone trees.

4.4 RESULTS FOR APPLES

We show results for APPLES on the RNASIim-VS datasets, to enable a comparison to
APPLES-2 and the other methods. Our results show across all datasets that APPLES-2
substantially improved on APPLES with respect to runtime, peak memory usage, and delta
error for both fragmentary and full-length sequences.

The improvement in accuracy between APPLES and APPLES-2 on full-length sequences
on the RNASim-VS datasets was shown in [14] and matches what we show in Figure 4.6(c).

We summarize these trends, noting that on full length sequences, APPLES-2 has an accuracy
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advantage over APPLES but it is not very large (and both methods are extremely accurate),
but APPLES-2 is clearly more efficient than APPLES for both runtime and peak memory
usage. We also note that APPLES is not that fast compared to the other methods. On the
50,000-leaf tree it is faster than pplacer-SCAMPP but slightly slower than EPA-ng-SCAMPP,
and on the larger trees it is slower than both EPA-ng-SCAMPP and pplacer-SCAMPP.
However, APPLES has generally good peak memory usage, which is lower than EPA-ng-
SCAMPP and pplacer-SCAMPP on the 50,000- and 100,000-leaf backbone trees, but then
higher than both on the 200,000-leaf backbone trees. Thus, APPLES is clearly inferior to
APPLES-2 on full-length sequences, and has close but lower accuracy than pplacer-SCAMPP
and EPA-ng-SCAMPP while not offering a computational advantage over EPA-ng-SCAMPP.

We now examine results for the fragmentary sequences (Figure 4.6(a,b)). Here we see
a dramatic degradation in accuracy for APPLES, so that it is by far the least accurate
of all methods, whether analyzing long fragments or short fragments. Furthermore, the
other methods seem to reduce in runtime and peak memory usage on fragmentary sequences
compared to full-length sequences, but this is not true for APPLES. Thus, APPLES-2 rep-
resents a clear and dramatic improvement over APPLES, under all RNASim-V'S conditions,
but especially so for fragmentary query sequences.

In trying to explain these trends, we note that the main difference between APPLES and
APPLES-2 is that APPLES-2 does not rely upon distances greater than a certain threshold
[14], whereas APPLES uses all distances in the distance matrix when it decides where to
place the query sequence. This difference may explain why APPLES-2 in general is more
accurate, and especially when there are fragmentary sequences. Specifically, recall that the
design of APPLES-2, and its restriction to “short distances”, is based on research regarding
distance-based tree estimation and the design of “absolute fast converging” distance-based
tree estimation methods (see [35]). In essence, research over the last two decades has shown
that distance-based tree estimation methods are impacted by large evolutionary distances,
and that estimations of large distances tend to have higher error than estimations of smaller
distances. Therefore, distance-based tree estimation benefits from techniques that (effec-
tively) restrict attention to the smaller entries in the distance matrix (or reduce the impact
of the larger distances) [35, 36, 37, 38]. Furthermore, there is less information in the frag-
mentary sequences than in full-length sequences, which also introduces additional error in
the estimated distances. Therefore, the estimated distances used by APPLES could have
higher error than those used by APPLES-2 (since APPLES-2 only uses the smaller dis-
tances), and this difference could be amplified on the fragmentary sequences. This would
explain why APPLES-2 would have higher accuracy than APPLES in general, and especially

on fragmentary data.
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Therefore our results indicate that APPLES-2 outperforms APPLES in all tested condi-

tions with respect to accuracy, runtime and peak memory usage.

4.5 ADDITIONAL SUBTREE SIZE EXPERIMENTS

Figure 4.7 shows the impact of varying the parameter B for use in pplacer-SCAMPP
and EPA-ng-SCAMPP on two datasets, 16S.B.ALL and nt78. Note that on these two
datasets, small values of B produce higher delta error for both methods, but that there
are no important differences in accuracy once B is large enough. There is remarkably little
variation in accuracy (and overlapping error bars) once B exceeds 100 for both datasets and
both methods, but even smaller values for B suffice for comparable accuracy. For example,
setting B > 500 suffices for optimal accuracy for both placement methods on the nt78
dataset. These results are somewhat surprising, since we had hypothesized that further
increases to B would show further reduction in placement error. However, this does not
seem to be the case on the two datasets shown in Figure 4.7, nor on the two datasets shown
in Experiment 1.

We also see that choices for B impact runtime and peak memory usage, with increasing
B resulting in increased computational effort for both methods. The increase in runtime
is greater for pplacer-SCAMPP than for EPA-ng-SCAMPP, but the increases in memory
usage for both methods are comparable in magnitude.

Overall these trends support the finding from Experiment 1 that setting B = 2000 provides

good accuracy without too large an impact in terms of computational effort.
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Figure 4.5: Experiment 3: Comparison of placement of full length and fragmentary sequences
on the RNASim-VS backbone trees with 50,000 to 200,000 leaves. Short fragments (top row),
long fragments (middle row), and full-length sequences (bottom row). Within each row, we
show placement delta error (left), runtime (center), and peak memory usage (right). We
report results for 1000 queries on the 50,000- and 100,000-taxon backbone trees and 200
queries on the 200,000-taxon backbone trees.
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Figure 4.6: Experiment 3: Comparison of placement of full length and fragmentary se-
quences, with APPLES, included on the RNASim-VS backbone trees. Short fragments
(top row), long fragments sequences (middle row), and full-length sequences (bottom row).
Within each row, we show placement delta error (left), runtime (center), and peak memory
usage (right). We report results for 1000 queries on the 50,000~ and 100,000-taxon backbone
trees and 200 queries on the 200,000-taxon backbone trees.
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Figure 4.7: Subtree Size Placement Results on Two Additional Datasets (one biological
and one simulated). Within each row the subfigures show: Mean delta Error (left), Mean
time in seconds (center), and Mean peak memory usage in Gb (right). Rows (from top to
bottom) show results on 16S.B.ALL for pplacer-SCAMPP and EPA-ng-SCAMPP, and nt78
for pplacer-SCAMPP and EPA-ng-SCAMPP.
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CHAPTER 5: FAILURES FOR PLACEMENT METHODS

We observed two types of failures for placement methods in our experiments: memory
problems and returning invalid outputs, indicated by -inf likelihood calculations. These
failures occurred only for pplacer and EPA-ng and not for their usage within SCAMPP
(when applied to B = 2000). Furthermore, pplacer was the only method to return -inf

likelihood scores, but both pplacer and EPA-ng encountered memory issues.

5.1 NEGATIVE INFINITY LIKELIHOOD SCORES FOR PPLACER

Our analyses using pplacer initially produced -inf likelihood scores for all returned place-
ments of query sequences in the LTP _s128_SSU dataset, when used with numeric parameters
estimated using RAXML (v7.2.6), which is the technique recommended by pplacer.

In order to diagnose the reason for these invalid likelihood scores, we performed an ex-
periment restricting the size of the backbone tree to be used with pplacer to smaller sub-
trees on this dataset. These subtrees are selected by reading in the full tree and then
randomly selecting N leaves, where N is the desired subtree size. This experiment was
performed for one query sequence, and tested on subtrees from size 5000, incrementing by
1000 until the returned confidence score is -inf. The randomly selected query is Nonomu-
raea_monospora__FJ347524__Streptosporangiaceae.

Given a backbone tree size of 9000 sequences, pplacer gave the runtime warning

Warning: GSL problem with location 16724 for query
Nonomuraea_monospora__FJ347524__Streptosporangiaceae;

Skipped with warning ”computed function value is infinite or NaN”.

Table 5.1: pplacer’s returned likelihood score when run on subtrees of different sizes for the
query Nonomuraea_monospora__FJ347524__Streptosporangiaceae from the LTP_s128 SSU
dataset. The likelihood scores are reported for the best (most likely) placement.

Subtree Size | log-likelihood score of placement

5000 -995,214.972501
6000 -1,119,560.99797
7000 -1,257,558.03492
8000 -1,393,610.63579
9000 -1,514,897.48593

10,000 -1,628,585.12695

11,000 -inf
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"placements":
L
{"p":

[[0.0603660571521, 0, -nan, -inf, 1.99999275208],
[0.0400326190167, 1, -nan, -inf, 1.99999275208],
[0.0289007951157, 2, -nan, -inf, 1.99999275208],
[0.0395654648659, 3, -nan, -inf, 1.99999275208],
[0.0197602138302, 4, -nan, -inf, 1.99999275208],
[0.00312862106398, 5, -nan, -inf, 1.99999275208],
[0.00100212520434, 6, -nan, -inf, 1.99999275208]

1, "nm": [["Nonomuraea_monospora__FJ347524__Streptosporangiaceae", 1]]

}
]

Figure 5.1: Sample pplacer Output with Negative Infinity Likelihood Scores

We also note the output of a failed placement (Figure 5.1), as it appears in the jplace file:
The likelihood scores of different size subtrees is reported in the Table 5.1. Note that the
likelihood scores are decreasing quickly (equivalently, negative values that are increasing in
magnitude) with the size of the backbone tree. The decreasing likelihood scores suggest the

numerical issues might be the source of the -inf likelihoods score.

5.2 MEMORY PROBLEMS FOR PPLACER

A placement ‘failure’ for pplacer in the nt78 dataset occurred when pplacer encountered

a segmentation fault and failed to produce any jplace file.

5.3 FAILURES FOR EPA-NG, EPA-NG-SCAMPP, AND PPLACER-SCAMPP

All failures encountered by EPA-ng were segmentation faults, and these also occurred on
the nt78 datasets. We did not attempt to run EPA-ng on the RNASim-VS datasets with
50K or more sequences. The EPA-ng-SCAMPP and pplacer-SCAMPP analyses never failed
with any setting of B we tried.

5.4 IMPLICATIONS FOR EPA-NG AND PPLACER

A comparison between pplacer and EPA-ng is helpful. As noted, pplacer failed to place
sequences on many large backbone trees, returning —oo log likelihood values, when using

RAxXML to estimate numerical parameters on the backbone tree (as recommended in [9]).
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Instead, estimating numerical parameters with FastTree 2 (and then using taxit to format
the output suitably for pplacer) enables it to produce valid outputs.

Why FastTree 2 produces numerical parameters that allows pplacer to run properly is
not known, but clearly there is some sensitivity in pplacer to these choices. In general,
FastTree 2 is known to not be as accurate as RAxML at estimating numeric parameters
(e.g., the likelihood scores returned by FastTree 2 are not as high as the likelihood scores
returned by RAxML, even when the trees are of comparable topological accuracy [39]),
and this trend suggests that less accurate parameter estimation may somehow be useful for
scalability of pplacer. Certainly, these trends further support the hypothesis that pplacer
has numerical issues.

In contrast, when EPA-ng failed to complete on these datasets, the issue was always in-
adequate available memory. Therefore, EPA-ng and pplacer have different vulnerabilities on
large backbone trees, explaining why they respond differently within the SCAMPP frame-

work.
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CHAPTER 6: DISCUSSION

6.1 IMPACT OF USING SCAMPP

In general, we find that SCAMPP improves computational performance (both memory
usage and running time) for both phylogenetic placement methods, but the impact on ac-
curacy depends on the model condition and even depends on whether pplacer or EPA-ng is
used. We also see that the relative accuracy and computational efficiency (both speed and
memory) compared to a leading fast phylogenetic placement method, APPLES-2, depends
on the model condition. We therefore begin with a discussion of these trends.

Starting with a comparison between pplacer and pplacer-SCAMPP, we note that on those
datasets on which pplacer could run, pplacer-SCAMPP was always at least as accurate
as pplacer, often substantially more accurate, and was also faster and had a smaller peak
memory usage. We also see that the subtree size, as defined by B, has a large impact on
pplacer: when B is very small (e.g., below 500 on the datasets in Experiment 1), delta
error rates are high, then error rates drop as B increases to (approximately) 2000, but as
B increases beyond that the error rates can become very high. This is most noteworthy
on the LTP_s128_SSU dataset, where there is a very large increase in error at B = 8000.
This trend shows that pplacer accuracy degrades on very large placement trees, which is
an intriguing finding. Since we also observed that pplacer can return —oo values on large
backbone trees (Chapter 5, and Table 5.1), this suggests that the issue is numerical. Taking
these observations together, we infer that pplacer has numerical issues that make it not work
that well (in terms of accuracy) on large placement trees, which is why the use of SCAMPP
improves accuracy.

The comparison between EPA-ng and EPA-ng-SCAMPP presents somewhat different
trends. On those datasets on which both methods run, we sometimes see EPA-ng more accu-
rate and sometimes less accurate than EPA-ng-SCAMPP; while these differences are small,
the fact that EPA-ng-SCAMPP can be less accurate than EPA-ng indicates a noteworthy
difference between EPA-ng and pplacer. We also see that increases in B beyond 2000 has a
small but occasionally negative imapct on EPA-ng-SCAMPP. On the other hand, EPA-ng
can fail to run on some datasets due to memory requirements. Overall, these trends suggest
that EPA-ng may not have the same numeric vulnerability as we saw in pplacer (see Chap-
ter 5 for additional discussion about this issue). In sum, our study shows that EPA-ng can
provide good accuracy on those large backbone trees on which it can run, and the benefit to
using EPA-ng within the SCAMPP framework may only be to enable it to run within the

available computational resources.
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SCAMPP has a larger beneficial impact, especially for runtime and memory usage, for
placing fragmentary sequences than it does for full-length sequences, which is also interesting.

Specifically, pplacer-SCAMPP and EPA-ng-SCAMPP become much more computation-
ally efficient on fragmentary sequences compared to full-length sequences, while APPLES-2
does not become more efficient on fragmentary sequences. These reductions in runtime and
memory use are likely due to the masking techniques for leading and trailing gaps used in
the SCAMPP framework as well as in EPA-ng and pplacer [11].

Overall, therefore, using SCAMPP greatly reduced runtime and memory usage for both
pplacer and EPA-ng, and either improved accuracy or at worst slightly decreased accu-
racy; however, the decreases in accuracy were limited to EPA-ng-SCAMPP. Moreover, there
were many large backbone trees on which neither pplacer nor EPA-ng could run, and us-
ing SCAMPP enabled them to run and with low memory usage. Thus, there was always
a benefit obtained in using SCAMPP in our experiments, but the type of benefit and its

magnitude depends on the placement method, backbone tree, and query sequence length.

6.2 CHOOSING BETWEEN PHYLOGENETIC PLACEMENT METHODS

This study establishes that pplacer-SCAMPP, EPA-ng-SCAMPP, and APPLES-2 can be
used on large backbone trees, and that pplacer and EPA-ng are not as scalable as these
three methods. Here we discuss the question of which of the three scalable methods should
be used, and under which conditions. A comparison between pplacer-SCAMPP and EPA-
ng-SCAMPP shows little difference in terms of accuracy, and differences for runtime and
memory usage that depend on the dataset. Here we examine the difference between pplacer-
SCAMPP and APPLES-2, as an example of when this framework can be useful.

The datasets we explored can roughly be divided into two sets: RNASim-VS with full-
length query sequences, and everything else. We will begin with a discussion of the RNASim-
VS with full-length sequences, since these present what may be a special case.

On the RNASIim-VS with full-length sequences, all the methods achieved very low average
delta error (below 0.3), and although pplacer-SCAMPP had the lowest error, the differences
in delta error between any two methods were very low. Given this, the driving factor in
choosing between methods may be computational performance. Although pplacer-SCAMPP
does provide an accuracy advantage over APPLES-2 on these datasets, it is also more com-
putationally intensive (somewhat slower and using much more peak memory). Hence, the
accuracy advantage provided by pplacer-SCAMPP over APPLES-2 probably does not make
up for the large computational hit.

In contrast, when placing fragmentary sequences into the same RNASim-VS backbone
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trees, the relative performance changes, and dramatically. First, the accuracy advantage
provided by pplacer-SCAMPP over APPLES-2 is much larger, and increases as the query
sequence length decreases. We also note that the delta error increases for all methods
(but more so for APPLES-2) as the query sequence length decreases. In addition, on the
shortest query sequences, where the length approximates that of many sequencing reads,
APPLES-2 and pplacer-SCAMPP have very similar memory usage and runtime (but with an
advantage to pplacer-SCAMPP). Thus, query sequence length impacts the relative accuracy
and computational performance of APPLES-2 and pplacer-SCAMPP, with shorter query
sequences favoring pplacer-SCAMPP.

It is therefore worthwhile to consider the four other datasets we studied, where the back-
bone trees varied in size from about 5000 leaves to at most 78,000 leaves and the query
sequences were full-length. On these four datasets, pplacer-SCAMPP-although fast and
reasonably memory efficient—was always slower than APPLES-2 and had higher memory
usage. Therefore, the choice of method on these four datasets would most likely be driven
by the degree to which pplacer-SCAMPP provided an accuracy advantage. On each of these
four datasets, pplacer-SCAMPP produced improved accuracy over APPLES-2, and in many
of these cases the improvement was large. Although these cases involved full-length query
sequences, many of them produced high placement error for all methods.

This study suggests that the typical condition may be one where APPLES-2 has insuf-
ficient accuracy and a likelihood-based method has sufficiently improved accuracy to merit
its use. In particular, the running time and peak memory usage advantage of APPLES-2
seems to disappear when placing fragmentary sequences into large backbone trees, and this

application may be the most common one (especially for analyses of metagenomic data).

6.3 RELATED STUDIES

This work builds off of an earlier prototype [1], which was limited to the SCAMPP frame-
work’s use with pplacer, and only explored a single model condition (RNAsim VS) with only
full-length sequences. We now compare that implementation of SCAMPP to the current
implementation, demonstrating that the new implementation is much faster and has lower
memory usage that the initial implementation. We then discuss other related approaches

for scaling phylogenetic placement methods to large datasets.

6.3.1 Running Time Comparisons of pplacer-SCAMPP Implementations

Our SCAMPP framework is based on an early prototype that was specifically designed
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for use with pplacer, and was referred to as “pplacer-XR”. This first implementation of
pplacer-SCAMPP was based on a Python script that relied upon Dendropy [40] and had
other aspects that affected the runtime. The study [1] evaluating pplacer-SCAMPP v1
showed good accuracy and scalability to large backbone trees, but was only compared to
APPLES and not to APPLES-2. The second implementation of the SCAMPP framework
has been implemented for improved speed, largely through using better data structures, and
studied with both pplacer and EPA-ng. The codebase for the SCAMPP framework contains
both versions of the SCAMPP framework, and is available at https://github.com/chry04/
PLUSplacer.

Process = Loading Data Process = Minimum Hamming Process = Extracting Subtree Process = Running pplacer Process = Backbone Placement
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Figure 6.1: A breakdown of the mean runtime of the original (version 1) and revised (version
2) implementations of pplacer-SCAMPP. Both versions of pplacer-SCAMPP were run under
the default settings.

Here we compare these two implementations of pplacer-SCAMPP with respect to runtime,
breaking this down into the different phases of the SCAMPP framework:

e Phase 1: loading the input data,

e Phase 2: finding the nearest taxon (using Hamming distances) to the query sequence,

e Phase 3: extracting the placement subtree for the query sequence,

e Phase 4: placing the query sequence into the placement subtree using pplacer, and

e Phase 5: finding the corresponding edge in the backbone tree.
Thus, Phases 1-3 together comprise Stage 1 within SCAMPP, Phase 4 is the same as Stage
2, and Phase 5 is the same as Stage 3. We report running times for pplacer-SCAMPP for
each phase when placing full-length sequences into the RNASim-VS datasets with backbone
trees of size 50K up to 200K.

As seen in Figure 6.1, the two implementations of pplacer-SCAMPP are essentially iden-

tical in runtime for the last two phases but have very different running times on the first
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three phases (at least on the larger backbone trees), where the re-implementation of pplacer-
SCAMPP is much faster than the initial implementation pplacer-SCAMPP v1. The runtime

differences between the two implementations increase with the size of the backbone tree.

6.3.2 Other Studies

Table 6.1: Runtime Breakdown for pplacer-SCAMPP on full-length sequences

RNASim Tree Size Time Per Process in Seconds
Loading | Finding | Extracting | Running | Backbone Total
Data | Taxon Subtree | pplacer | Placement | Runtime
50,000 3.24 3.88 0.37 20.21 0.06 27.76
100,000 6.64 6.43 0.48 20.29 0.07 33.91
200,000 13.37 10.60 0.80 20.33 0.09 45.19
50
g 30 /
1]
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Figure 6.2: Mean running time for pplacer-SCAMPP on three different RNAsim backbone
tree sizes, 50,000, 100,000, and 200,000, in placing full-length sequences.

There are two relatively closed related approaches to the SCAMPP framework that re-
quire discussion: pplacerDC [41] and the multilevel “Russian Doll” phylogenetic placement
technique [42]. We discuss each in turn.

The pplacerDC [41] technique employs a more exhaustive approach than pplacer-SCAMPP,
but also enables pplacer to scale to larger backbone trees. In pplacerDC, the backbone tree is
divided (through edge deletions) into placement subtrees with a bounded number of leaves,

and then the query sequence is placed into each of the placement subtrees using pplacer.
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Each such placement is then embedded in the full backbone tree, thus producing an extended
backbone tree, and the maximum likelihood score is estimated (using the provided numeric
parameters, which are not re-optimized) using RAxML. The extended backbone trees thus
have all the taxa (including the query sequence) and so can be compared to each other with
respect to their maximum likelihood scores. The tree with the best likelihood score is then
returned.

The study evaluating pplacerDC was limited to the RNASim VS datasets, where it was
shown to be able to scale to backbone trees with 100,000 leaves. However, pplacerDC
failed on backbone trees 200,000 leaves and was extremely computationally intensive on
those datasets on which it completed — with higher running time and peak memory usage
than pplacer-SCAMPP. Finally, pplacerDC was not evaluated on datasets with fragmentary
sequences. Since both methods have been run on the same datsets (RNASim-VS with full-
length sequences), it is possible to compare them. This comparison shows that pplacerDC
is slower, has higher delta error (e.g., about twice as high on the 100,000-leaf backbone tree),
and higher peak memory usage.

To understand the differences in runtime and peak memory usage, recall that pplacerDC
requires that the query sequence be placed into all the placement subtrees created by the
decomposition, which makes the runtime increase linearly with the backbone tree size (unless
run with unbounded parallelism. There is also a memory and runtime hit produced by the
use of RAXML to compute the likelihood score of each extended tree (and the number
of these trees grows linearly with the size of the backbone tree). Thus, it is easy to see
why pplacerDC is more computationally intensive than pplacer-SCAMPP. However, it is
not clear why there should be an accuracy disadvantage. One possible explanation is that
the placement subtrees produced by pplacerDC and pplacer-SCAMPP are very different:
pplacerDC forms the placement subtrees by deleting a set of edges and then fixes this set
for use by all the query sequences, whereas pplacer-SCAMPP allows each query sequence to
optimize the selection of its placement subtree to be induced by the leaves that are closest to
its selected nearest taxon. It may well be that these individually-selected placement subtrees
produced by pplacer-SCAMPP are better suited for use with pplacer than the pre-computed
placement subtrees produced by pplacerDC, which are not optimized for individual query
sequences. However, it is also possible that using RAXML to compare different placements
(through calculation of the maximum likelihood score) does not provide good accuracy on
large backbone trees. Future work is needed to understand why pplacer-SCAMPP is more
accurate than pplacerDC.

Another useful strategy for addressing the limited scalability of phylogenetic placement

methods with respect to the backbone tree size is the multilevel placement method [42]
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that is also available within the GAPPA suite of tools [43]. The multilevel “Russian Doll”
placement approach is described for use with a taxonomy (on a carefully selected set of
sequences), but the general technique can be extended for use with any rooted tree. A sparse
but representative subset of leaves from the rooted tree is selected, and is then used as the
backbone tree (where it is referred to as a “broad backbone tree” (BT)). A phylogenetic
placement method is then used to place the query sequence into the BT, which allows it to
identify the best clades (rooted subtrees) for more careful exploration. The query sequence
can then be placed in each of the clades, and the best placement(s) for each query sequence
can be identified. By design, this multi-stage process reduces the need to place into the
full backbone tree, and so reduces the computational effort for phylogenetic placement. The
approach is very different from ours in a few ways, but the main difference is that it requires
rooted trees. Nevertheless, it is a very interesting approach, and extending this technique

to work with unrooted trees merits investigation.

6.4 OTHER FUTURE WORK

In previous sections we have identified some directions for future work. Here we discuss
additional opportunities for developing the approach we have described here, as well as

alternative approaches.

6.4.1 Improving the SCAMPP Design

The current SCAMPP strategy places a query sequence by finding a nearest taxon (i.e.,
a leaf that has minimum Hamming distance to the query sequence) and then extracts a
subtree with B leaves using that leaf. Thus, the current strategy has only one algorithmic
parameter (B) beyond the choice of the placement method. Our default is B = 2000, but
Experiment 1 and our additional evaluations reported in Section 4.5 suggested the possibility
that the optimal setting for B might depend both on the dataset properties and on the
phylogenetic placement method. In particular, if accuracy is the most important objective,
then it seems possible that larger values of B might improve accuracy for EPA-ng-SCAMPP,
and that very small values might suffice for sufficiently “easy” datasets. Hence a better
understanding of the impact of dataset properties on this parameter selection is needed.
Moreover, our placement subtree construction approach is very simple, and it is possible
that other techniques for extracting a placement subtree might provide improved accuracy

compared to this technique, even if the runtime and memory usage does not change.
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We also note that EPA-ng has been optimized for placing large numbers of query sequences
into backbone trees. This is an advantage for EPA-ng that is not enabled in the SCAMPP
framework, which gives the placement method a different subtree for each query sequence.
In order to take advantage of the batch processing offered by methods such as EPA-ng, a

different divide-and-conquer framework would need to be explored.

6.4.2 Additional Evaluation

More generally, a full evaluation of the SCAMPP phylogenetic placement approach re-
quires additional study. We performed a leave-one-out study, but a more extensive analysis
including leave-clade-out study should be explored. We also did not explore the impact
of alignment error in the phylogenetic placement pipeline, and so this should also be ex-
amined. Finally, we explored pplacer-SCAMPP and EPA-ng-SCAMPP in the context of
growing a large tree, but they should also be evaluated for use in microbiome abundance
profiling and taxon identification, as some of the most accurate such methods use phyloge-
netic placement. Thus, there are several directions for future work that have the potential
to lead to improved understanding of how to design phylogenetic placement methods for use

in different downstream applications.
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CHAPTER 7: CONCLUSIONS

Phylogenetic placement is a basic computational step in several bioinformatics pipelines,
including incremental construction of very large phylogenies and taxonomic identification of
reads obtained in metagenomic analyses. Of the many phylogenetic placement methods that
have been developed, methods that use maximum likelihood, such as pplacer and EPA-ng,
has been found to be the most accurate. Unfortunately, these likelihood-based methods are
difficult to use with moderately large backbone trees (i.e., they can fail to return valid outputs
or may have excessive memory requirements), which has meant that other phylogenetic
placement methods are necessary. Methods such as APPLES-2 use distance-based techniques
to perform phylogenetic placement, and are particularly fast and scalable; however, this and
other studies have shown distance-based placement to not provide the same level of accuracy
as likelihood-based methods.

We have presented the SCAMPP framework, a three-stage procedure for scaling alignment-
based phylogenetic placement methods. We evaluated the SCAMPP framework for use with
two such methods, pplacer and EPA-ng. Our study showed that using SCAMPP allowed
both pplacer and EPA-ng to scale to backbone trees with 200,000 leaves without high peak
memory requirements, thus greatly surpassing the limitations of these methods when used
outside the framework. For those datasets on which pplacer could run, we also saw that
pplacer-SCAMPP had better accuracy than pplacer, was faster, and used less peak memory.
While EPA-ng-SCAMPP was sometimes less accurate than EPA-ng, those reductions in
accuracy tended to be small and the improvement in running time and peak memory usage
was very high. Thus, in general SCAMPP provides computational benefits to both methods
and either improves accuracy (for pplacer) or has a variable impact (for EPA-ng) that tends
to be minor.

One of the interesting trends we saw in this study is that although pplacer-SCAMPP
improved on APPLES-2 for accuracy in all the cases we evaluated, the differences in some
cases were extremely small; furthermore, in nearly all cases, APPLES-2 was the fastest
and least memory-intensive method. Thus, it is not at all obvious that any one method
dominates the others. This is particularly important, given that computational performance
may be a limiting factor, making it by necessity a requirement to use the fastest method,
or the least memory-intensive method, on a given dataset. In considering the different
factors that impact accuracy and runtime/memory usage, we suggest that APPLES-2 be
used when highly accurate phylogenetic placement seems likely, as it tends to be the most
computationally efficient, but that pplacer-SCAMPP or EPA-ng-SCAMPP be used under
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other conditions. In particular, there may be a benefit to using pplacer-SCAMPP or EPA-
ng-SCAMPP instead of APPLES-2 when the query sequences are short, as is typical in

metagenomic datasets.
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APPENDIX A: ADDITIONAL EXAMPLE

A.1 ILLUSTRATION OF STAGE 3

In Stage 3, SCAMPP takes the placement of the query sequence into the subtree (as
defined by Stage 2) and determines where to add the query sequence into the backbone tree.
We show two examples of how SCAMPP would perform the phylogenetic placement of two
different query sequences, a and b, that place into the same edge of the same placement tree
but with different branch lengths (Figure A.1), and how SCAMPP uses the branch lengths
in this determination.

The backbone tree (shown at the top) is the same, but the two query sequences are
different. In the top row we see the outcome of Stage 1, so that both query sequences a
and b identify the same nearest taxon [ and also extract the same placement subtree. Note
that the edges in the placement subtree correspond to paths in the backbone tree, and the
lengths of the edges in the placement subtree are computed by summing up the lengths of
the edges they correspond to in the backbone tree. That is, the placement subtree and its
edge lengths are obtained by inducing the subtree using the leafset and then summing up
the relevant edge lengths. This correspondence and the fact that edge lengths are defined
in this manner is used in the placement into the backbone tree, as the rest of this discussion
illustrates.

In Stage 2, the two query sequences a and b are placed into the same edge (which we will
call ¢’) of the placement subtree, and ¢’ has length 3.0 in the placement subtree. Note that
the query sequence on the left is placed at a different location on ¢’ (in terms of length along
the edge) than the query sequence on the right: the query sequence on the left divides the
edge length into 1.8 and 1.2 while the query sequence on the right divides the edge length
into 2.7 and 0.3.

To describe Stage 3, we need to show how SCAMPP finds the associated path Path(e’)
in the backbone tree corresponding to €', and then how, for each query sequence, it uses
the position along the edge in ¢’ in the placement tree to find exactly which edge in the
backbone tree should have the query sequence, and exactly where along that edge in the
backbone tree the query sequence should be placed.

Note that the edge €’ in the placement subtree defines the bipartition 7, = {P, O}|{S, U, V, [}
on the placement subtree. Furthermore, edge ¢’ extends between two (unlabelled) nodes
which we will refer to in this description as J and K, with J above K in the figure (so J is

adjacent to both P and O in the placement subtree, and K separates nodes V, S, U, [ from
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the rest of the leaves in the placement subtree). Note that the backbone tree contains the
placement tree, and so has nodes J and K as well. In examining the path in the backbone
tree between nodes J and K, we see that it has three edges. In other words, the path in the
placement tree between J and K is a single edge, but the path in the backbone tree between
J and K has three edges. For the sake of exposition, we will refer to these three edges
according to their position along the path (as depicted in the Figure) as “top”, “middle”,
and “bottom”. Thus the top edge includes endpoint J, the bottom edge includes endpoint
K, and the middle edge has neither. The top edge has length 0.8, the middle edge has length
1.6, and the bottom edge has length 0.6. By construction, these edge lengths sum up to 3.0,
the length of edge €.

Recall that SCAMPP finds the path Path(e’) corresponding to edge €’ by examining the
bipartitions in the backbone tree that induce the same bipartition 7... The backbone tree has
additional leaves beyond those in the placement subtree, but exactly three of the edges in the
backbone tree produce bipartitions that induce m.,. Those edges are exactly the edges on the
path between J and K in the backbone tree. Thus, another way of describing how SCAMPP
finds the path Path(e’) in the backbone tree corresponding to edge €’ in the placement tree
is by defining the two endpoint nodes for ¢/, and then looking at the corresponding nodes in
the backbone tree and the path between them.

Now we show how SCAMPP uses the length along ¢’ where the query sequence is placed
to determine where to insert the query sequence into the backbone tree. The two query
sequences are both placed into edge €’ but at different locations (in terms of branch lengths):
the query sequence on the left splits 3.0 into 1.8 and 1.2, and the query sequence on the
right splits 3.0 into 2.7 and 0.3.

Consider first the query sequence a, for Figure A.1(a). It is inserted into the edge ¢’ at a
length 1.8 from the node J. Therefore, to find where to place it into the backbone tree, we
traverse the path Path(e’), and we find that the middle edge (which has length 1.6) would
be selected, and the query sequence a would be placed at length 1.0 from the top of that
edge (i.e., the endpoint closer to J).

To place the other query sequence, b, we do the same analysis, but this time we need
to find the edge in Path(e’) having distance 2.7 from node J (see Figure A.1(b)). This
returns the bottom edge in Path(e’), and the location along that edge for inserting the
query sequence from the right hand side would be 0.3 from each of its endpoints.

Thus, by using the branch lengths, the exact location in the backbone tree can be found.
The key to this working is that the placement tree, along with its branch lengths, are defined

by the backbone tree; otherwise this would not work as simply.
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Figure A.1: Using SCAMPP to insert two different query sequences, a and b, into the same
backbone tree. Stage 1: Each query sequence picks the same nearest taxon and extracts the
same placement subtree. Stage 2: each query sequence is placed into the same edge, but
at a different location along that edge as indicated by the way the length (3.0) of the edge
is distributed. Stage 3: the two query sequences end up in different edges in the backbone
tree. See text for additional details.
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