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Abstract

In this study, we present TIPP-SD (i.e., TIPP for Species Detection),
a new technique for species detection in a microbiome sample. TIPP-SD
uses a modified version of TIPP3, which is a recently developed abundance
profiling tool based on maximum likelihood phylogenetic placement into
marker gene taxonomies. TIPP-SD depends on a parameter (i.e., “thresh-
old”) for the required support for species detection, thus allowing us to
compute a precision-recall curve as we vary this parameter. In compar-
ing the precision-recall curves for TIPP-SD, TIPP3, Kraken2, Bracken,
and Metapresence, we find that TIPP-SD improves on the other methods
with respect to accuracy under conditions where some species occur in
low abundance, or where there is sequencing error. Under easier condi-
tions, TIPP-SD is close to the best of these methods. Finally, although
TIPP-SD is slower than Kraken2 and Bracken, it is still fast enough to be
used on large datasets.

1 Introduction

Abundance profiling and species detection are two related problems in micro-
biome analysis. Species detection aims to list the species found in an environ-
mental sample, while abundance profiling aims to estimate the distribution of
species (or genera, families, etc.) within the sample. Each of these problems
has broad applications and together they provide insight into questions related
to ecology, evolution, and human health [4, 29, 31, 19, 21].

Some of the methods for these problems include Bracken [23], Kraken2 [42],
krepp [34], MEGAN4 [12], Metabuli [16], MetaPhlan4 [3], Metaphyler [20],
mOTU [32], sylph [36], the TIPP family of methods [27, 35, 38], and YACHT
[17]. While methods for abundance profiling can be used for species detection
by setting a threshold above which a species is considered to be detected, the
selection of the appropriate threshold is itself a non-trivial question. In addi-
tion, because the goal of abundance profiling is an estimate of the distribution
(relative frequencies) at a given taxonomic level, such as species, abundance
profiling methods can afford to ignore very low abundance taxa, as setting their
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frequency to zero is unlikely to hurt the overall accuracy by more than a very
small amount. However, such a strategy can reduce their utility for species
detection. Other issues in using abundance profiling for species detection are
discussed in [33], who specifically emphasize the importance of detecting species
that are present in very low frequencies (i.e., “rare taxa”), and argue that abun-
dance profiling methods are insufficient for this purpose. For multiple reasons,
therefore, methods specifically designed for species detection are of interest.

In this study, we propose TIPP-SD, a new technique for species detection.
While TIPP-SD builds on the basic algorithmic design in TIPP3 [38], in order
to achieve high precision and recall for species detection, it modifies the TIPP3
technique in several ways.

We compare TIPP-SD to the naive use of TIPP, and show that TIPP-SD
provides superior accuracy for species detection. We also compare TIPP-SD to
Bracken [23], Kraken2 [42], and Metapresence [33]. We find that TIPP-SD has
very good accuracy, with improved accuracy in many conditions. We also find
that TIPP-SD is slower than Kraken2 and Bracken, but is still fast enough to
be used on very large datasets.

The rest of the paper is organized as follows. We provide background in-
formation in Section 2, including details about TIPP3. We present TIPP-SD
in Section 3. We present the experimental design in Section 4, and the results
are provided in Section 5. A discussion of the trends observed is provided in
Section 6. The supplementary materials provide additional results and details.

2 Background

We provide some background here, including a description of the TIPP3 method
for abundance profiling.

2.1 Abundance profiling methods based on marker genes

The goal of abundance profiling is to obtain a good estimate of the distribution
of the species, genera, families, etc., in a given microbiome sample. While this
problem can be considered at different taxonomic levels, for the purpose of this
discussion, we will assume the interest is in estimating the abundance at the
species level.

The input is typically a set of reads, though in some cases contigs may also
be used, which could be based on amplicon sequencing (e.g., just one gene)
or metagenomics (from across the genome). Because the goal is to produce a
good estimate of the relative frequencies of species, abundance profiling meth-
ods must consider factors that distort the estimates of relative abundance: the
genome length and whether genes appear in multiple locations within a genome
[26, 22]. Because of these challenges, some methods for abundance profiling are
based on filtering the input reads to those that are derived from marker genes,
which are genes that are expected to be single-copy and universal. Examples of
such methods, which are referred to as “marker gene-based methods”, include
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Metaphyler [20], MetaPhlan [39], mOTUs [32], and the TIPP family of methods
[27, 35, 38]. Of these, TIPP3 [38] has been shown to have the best accuracy for
abundance profiling, especially when working with reads generated by sequenc-
ing technologies that have high error rates (indels or substitutions), such as
Nanopore [40] and PacBio [30]. As shown in [38], restricting Kraken2, Bracken,
and Metabuli to the reads that are mapped to the TIPP3 marker genes improved
the abundance profiling distributions that each method produced. Furthermore,
even after this modification to Kraken2, Bracken, and Metabuli, TIPP3 was still
more accurate than Kraken2, Bracken, and Metabuli in nearly all conditions;
the exceptions were limited generally to Illumina reads (which have very low er-
ror rates). TIPP3 was also more accurate than Metaphlan4 [3], which is another
marker-gene based method.

Because TIPP3 had high accuracy for abundance profiling, we seek in this
study to build on its technical approach, but modify it so as to obtain high
accuracy for the species detection problem.

2.2 TIPP3

We begin with a description of the high-level approach of the TIPP3 method;
see [38] for full details. The (publicly available) TIPP3 reference package in-
cludes multiple sequence alignments and taxonomies for each marker gene in
the package. TIPP3 uses BLASTN [1] to map reads to the TIPP3 marker gene
reference package. Any read that does not map to a marker gene is discarded.
Each read that maps to a marker gene is added into the corresponding marker
gene alignment using WITCH [37].

The next step in the analysis places each read into the taxonomy for that
marker gene, using a phylogenetic placement method based on maximum likeli-
hood, such as pplacer [24], EPA-ng [2], or BSCAMPP [41] (a divide-and-conquer
approach that enables pplacer and EPA-ng to be used on large trees). Of these
phylogenetic placement methods, pplacer is the most accurate but cannot be
used on large trees very easily. EPA-ng is faster than pplacer and slightly less
accurate. By default, TIPP3 uses pplacer-taxtastic [5, 9], a way of using pplacer
that allows it to run on moderately large trees.

The output from the phylogenetic placement step is a list of the top edges
in the tree (using maximum likelihood as the criterion), along with the relative
support for each edge. TIPP3 picks the edge in the rooted taxonomy so that
the support for the read belonging to the clade below that edge is at least B,
where B is an input parameter set to 0.95 or 0.9 depending on whether EPA-ng
or pplacer is used for phylogenetic placement. The selected edge determines the
taxonomic labels for the read: it may be given a species label, or it may only be
placed at a genus or higher level. Finally, the taxonomic information across all
the reads that map to marker genes is aggregated to form an abundance profile
at each taxonomic level.

A fast version of TIPP3 (TIPP3-fast) makes two adjustments to the TIPP3
design in order to reduce the runtime, with a small increase in error: instead of
using WITCH to add reads into the marker gene alignment it uses BLASTN, and
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instead of using pplacer-taxtastic for phylogenetic placement it uses BSCAMPP
with EPA-ng.

3 TIPP-SD

We now describe TIPP-SD. We describe it here for species detection, but note
that the algorithm can be generalized to detect other taxonomic levels as well.

Recall that TIPP3 has a publicly available reference package of reference
taxonomies and multiple sequence alignments, one for each of its marker genes;
TIPP-SD uses these in its analyses. Recall also that TIPP3 places reads into
these taxonomies using a maximum likelihood phylogenetic placement method,
and these placements return statistical support values on the edges. TIPP3
considers the statistical support returned by these methods, and only places a
read into an edge if the clade below it has support at least B (where B is an
input parameter, set by default to be either 0.9 or 0.95, depending on which
phylogenetic placement method is used).

The first difference between TIPP-SD and TIPP3 is that we do not use B
to inform the placement of each query sequence. Second, we have a fast but
accurate way of performing the phylogenetic placement. Recall that TIPP3-fast
(the fast version of TIPP3) uses BSCAMPP with EPA-ng to speed up the read
placement step. BSCAMPP using pplacer as the base method is more accurate
than BSCAMPP with EPA-ng, with only a small increase in running time [41].
In this study, we explore using BSCAMPP with pplacer (i.e., BSCAMPP(p)) for
read placement and BLASTN for read alignment. This modified technique aims
to improve accuracy in phylogenetic placement of reads into the taxonomies
and sacrifies a little accuracy for the read alignment, which adds the reads into
the multiple sequence alignment for the marker gene, without increasing the
runtime too much.

The next change between TIPP-SD and TIPP3 is how we use BSCAMPP(p),
the maximum likelihood phylogenetic placement method, to classify a read at a
species level, assuming sufficient statistical support. Given a single read that is
mapped to the marker gene g, BSCAMPP(p) returns support values for the top
seven (by default) edge placements in the tree, based on their likelihood values.
If none of these are at the species level, then the read will not be classified at the
species level. Otherwise, we use the support value returned by BSCAMPP(p)
for the placement of the read into the taxonomy at the species level as the
“confidence score” for this species assignment, and use this in the next step.

Given this information, we consider two techniques for using TIPP-SD for
identifying the set of species available in the sample: marker vote and marker
confidence, each of which depends on a user-specified threshold T , as we now
describe.

Marker vote Each read that is assigned a species label using the technique
from the previous paragraph is also mapped to a marker gene, and we consider
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the marker gene to have therefore voted for that species. Thus, after aggre-
gating results from all mapped reads, we will have a collection of species, each
with a list of marker genes that voted for the species. We let vote(s) denote the
number of votes for the species s.

In the TIPP3 reference package, a species may not appear in all the marker
gene trees, depending on the quality and completeness of the genomes for the
species. Therefore, for each species s, we note the number ms of marker genes

in which s appears. The ratio vote(s)
ms

∈ [0, 1] then represents the fraction of
marker genes that vote for the presence of species s. By setting a threshold T

and checking if vote(s)
ms

≥ T , we can determine if a species s is detected. Thus,
the output of marker vote depends on the threshold T .

Marker confidence Here we describe a technique for assigning a confidence
for a species being present that takes into account the statistical support val-
ues for a read to belong to each of the species, as provided by BSCAMPP(p)
during the read placement stage. Thus, we do not select the single best species
assignment for a read, but consider all the assignments with positive support,
and then normalize appropriately. We describe this technique in detail below.

For a given gene g and species s contained in the gene g, we let c(g, s) be
the sum of the confidence scores for s across all the reads mapped to gene g
that have non-zero support for s, divided by the number of such reads. We
sum c(g, s) across all the ms genes g that contain s, and divide this by ms to
obtain the final confidence score Cs for species s. By setting a threshold T for
confidence, we will say that s is detected if Cs ≥ T . Thus, the marker confidence
output depends on the threshold T .

4 Experiment Design

In our experiments, we explore different methods for identifying species on
datasets generated with varying types of sequencing technologies, where we
know the true list of species present in the sample. This allows us to quantify
both precision and recall for each analysis, and to explore the conditions under
which each method is accurate.

4.1 Methods

We compared TIPP-SD and its variants to TIPP3, Kraken2 [42], Bracken [23],
and Metapresence [33]. Here, we briefly describe each method and the databases
they use in comparison to TIPP-SD.

Kraken2 and Bracken Kraken2 and Bracken are both taxonomic identifi-
cation tools that assign taxonomic labels to input reads. They can also be used
for abundance profiling, and we used them for species detection based on their
reported number of reads assigned to each species. Kraken2 uses its database
and does k-mer searches for read classification. We used its published database
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Table 1: Properties of simulated datasets.

Dataset Type Number of species Number of reads Mean length Avg coverage

50 Known
Illumina 50 10,500,910 150 20
PacBio 50 1,047,884 3006 20

Nanopore 50 184,327 4033 5

1000 Known

Illumina 1000 13,795,579 150 1
PacBio 1000 1,418,197 2925 1

Nanopore 1000 921,633 4036 1
Nanopore 1000 9,216,327 4032 10

CAMI-II Marine
Illumina 301 33,301,262 150 2
PacBio 301 1,641,591 2968 2

maxikraken2-PlusPF on June 5th, 2023, with 24,320 unique species. This num-
ber of species is close to the number of species (25,509) used in the TIPP3
reference package. Bracken uses the Kraken2 output and modifies the reads for
its report, hence using the same database.

Metapresence Metapresence is specified for species detection by mapping
metagenomic reads to genomes. It pre-builds a Bowtie2 database [18] on a fixed
set of genomes, and uses this database for species detection in input reads. In
the Metapresence study [33], the authors did not provide a pre-built database.
Hence, for this study, we built a customized Bowtie2 database using the proce-
dure described in Metapresence. We made sure the comparison is fair between
TIPP-SD and Metapresence by restricting the TIPP3 reference package to the
same set of species in the Bowtie2 database. More details can be found in
Section 5 regarding the creation of the customized Bowtie2 database.

4.2 Benchmark datasets

A summary of the datasets we used and their properties can be found in Table
1. We provide more details for the read simulation and each dataset in the
following paragraphs.

Sequencing models We used read simulators to generate Illumina, PacBio,
and Nanopore reads of each given set of genomes, as described below (except for
CAMI-II datasets, which are available online). We used art illumina (v2.5.8)
[11] for generating Illumina short reads with the HS25 error model (fixed 150bp
in read length, ∼ 0.1% substitution rates). We used PBSIM [28] for generating
PacBio long reads with the CLR sequencing error model, with an average read
length of 3000bp and a minimum length of 400bp to understand the impact
of sequencing error. The CLR model has an average 78% sequencing accu-
racy, with 3.23% substitution rate, 10.53% insertion rate, and 3.98% deletion
rate (obtained by aligning simulated reads to reference using LAST [14]), We
used Nanosim (v3.2.2) [43] with a pretrained metagenome model of bacteria
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community to simulate Nanopore reads with a total error rate of 11.3% (3.9%
substitution, 3.2% insertion, and 4.2% deletion rates).

50 known species We first used the same known species datasets from the
TIPP3 study [38], with 50 known species in Illumina, PacBio, and Nanopore
reads. “Known” means that genomes of the species (not necessarily the same
exact genome) are present in the reference package or database of both TIPP-
SD and Kraken2/Bracken. These datasets have a coverage of 20 for all included
genomes except for Nanopore reads, which have a coverage of 5. Note that the
50 species have an even distribution of abundance.

1000 known species We also generated a new dataset with 1000 unique
species that are also known to TIPP-SD and Kraken2/Bracken, with Illumina,
PacBio, and Nanopore reads. Each of the unique species has genome data
present in the reference package or database of both TIPP-SD and Kraken2/Bracken.
We set the coverage of read simulations to 1 to imitate low species presence in
a microbiome sample. We also generated a separate set of Nanopore reads with
a coverage of 10 to study whether higher coverage could improve the meth-
ods’ performance in recall and/or precision of species detection. Note that the
1000 species also have an even distribution of abundance; thus, each species is
expected to appear in 0.1% of the sample.

CAMI-II marine dataset Additionally, we included the Illumina and PacBio
reads from the CAMI-II marine dataset, replicate 1 [25]. These two datasets
were also studied in [38]. Replicate 1 contains 301 species with non-zero abun-
dance, which are considered for species detection. This dataset has a wide range
of abundance levels, and the ten species with the lowest abundance range from
0.0000004% to 0.007% (in contrast, the top 10 species have abundances ranging
from 2.4% to 14.4%).

4.3 Evaluation metrics

We evaluated each method by its ability to detect species that should be present
in the input reads, with precision and recall. Precision is defined as TP

TP+FP ,
where TP is the number of species correctly identified and FP is the number of
species falsely detected. Recall is defined as TP

TP+FN , where FN is the number
of species that should be detected but are not recovered by the method. We also
examined F1 score, which is defined as 2·precision·recall

precision+recall and takes both precision
and recall into consideration. Precision, Recall, and F1 score are all in the range
of [0, 1].

To obtain the precision-recall curve of a method, we first extracted the
method’s taxonomic identification results. We then used a support threshold to
determine if a species was present, and varied the support thresholds to obtain
precision-recall curves. The precision-recall curves are computed as follows:
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• For TIPP-SD used with Marker Vote: the threshold T is a value between
0 and 1, and we say the species is detected if the marker vote (a value
between 0 and 1) exceeds T ; the corresponding approach is used with
Marker Confidence. By varying T , we obtain the precision-recall curve.
We also set two default values for T in Experiment 1, and indicate these
in the figures as red stars.

• For Bracken and Kraken2: we use an integer threshold X, and report a
species as present if its read count exceeds X. By varying X between 1
and the largest observed value, we obtain precision-recall curves. Bracken
and Kraken2 do not have default thresholds for species detection.

• For Metapresence: this method uses two metrics they define called BER
(Breadth-Expected breadth ratio) and FUG (Fraction of Unexpected Gaps)
that range from 0 to 1. We consider the pair (x, y), where x is the
threshold for BER and y is the threshold for FUG, and retain only the
reported species by Metapresence if their BER and FUG scores exceed
both thresholds. Then, we can compute the corresponding precision and
recall value for the pair (x, y). We repeat this process for all pairs of
(x, y), x ∈ [0, 1], y ∈ [0, 1], with a step of 0.01, and obtain a collection
of (precision, recall) pairs. We sort these values by recall in ascending
order and then by precision in descending order, and plot them as the
Metapresence precision-recall curve.

5 Results

5.1 Experiment overview

In Experiment 1, we explored different strategies for species detection with
TIPP-SD, as described in Section 3, and selected the best variant and two
reporting thresholds for TIPP-SD species detection. In Experiment 2, we ex-
plored the impact of filtering input reads [38] to use with Bracken and Kraken2
for species detection, and compared both methods to TIPP-SD with respect to
precision, recall, memory, and runtime usage. In Experiment 3, we evaluated
Metapresence and TIPP-SD and compared their precision, recall, memory, and
runtime usage. Finally, we presented a case study that examines the potential
causes of false positives with Kraken2, Bracken, and TIPP-SD, using the 1000
known species datasets.

When comparing each external method to TIPP-SD, we ensured that the
reference database/package contains all species we want to detect. In the case
of Kraken2 and Bracken (Experiment 2), we selected only species for detection
in the intersection of the Kraken2 and TIPP3 databases. In the case of Metap-
resence (Experiment 3), we only ran it on the three datasets with 1000 known
species and built a Bowtie2 database of 2000 genomes. The 2000 genomes con-
tain the genomes of 1000 species we want to detect, and an additional 1000
genomes which have 80-95% average nucleotide identity (ANI) to at least one of
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Figure 1: Precision-recall curves of TIPP-SD using either marker vote
or marker confidence on nine different benchmark datasets. TIPP-SD
is given reads generated from each of the datasets under one of three sequenc-
ing technologies (Illumina, PacBio, or Nanopore), as indicated in the name
of the dataset above the subfigure. All reads provided to TIPP-SD are from
genomes belonging to species also present in TIPP-SD’s reference package. The
datasets whose name includes “cov 1” have coverage 1 and those whose name
includes “cov 10” have coverage 10. This figure shows that TIPP-SD based
on marker confidence produces higher recall than marker vote, and has better
precision at each recall value.
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Figure 2: Precision-recall of TIPP-SD compared to TIPP3. TIPP3’s precision-
recall curve is obtained by setting thresholds on the abundance level, and only
species with an abundance greater than the threshold are considered as “de-
tected” by TIPP3. TIPP3 is less accurate than TIPP-SD on these datasets,
and on the other datasets with at least 1000 species (see Fig S1).

the known genomes. ANI was computed using FastANI [13]. We also restricted
the TIPP3 reference package to the same genome set when comparing TIPP-
SD to Metapresence. The reason why we want this consistency is because of
the findings from [6], which point out that database size positively correlates
with the loss of resolution at the species level. We also tried creating a Bowtie2
database for Metapresence that would include all unique species from the TIPP3
reference package (∼25k unique species), but it timed out after 7 days with 16
cores and 512 GB of memory.

5.2 Experiment 1: Species detection strategies with TIPP-
SD

5.2.1 Marker vote vs. marker confidence

Figure 1 compares TIPP-SD using marker vote or marker confidence as the
strategy to detect species from input reads.

Although the difference in the 50 known species datasets between the two
strategies is small, using marker confidence achieved higher recall than marker
vote, and for a given recall value it also had higher precision. On the 1000
known species datasets, TIPP-SD with marker confidence had better precision
and recall than TIPP-SD with marker vote. The same observations hold for the
CAMI-II dataset, on both Illumina and PacBio reads. Based on these results,
henceforth we only report TIPP-SD using marker confidence.

5.2.2 TIPP-SD variants

We compared TIPP-SD to two variants by changing the alignment and place-
ment methods for reads, in all cases, using marker confidence for species detec-
tion. Recall that TIPP-SD uses BLASTN for read alignment and BSCAMPP(p)
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for phylogenetic placement of reads into the taxonomy for the marker gene. Vari-
ant 1 uses WITCH for aligning reads and pplacer-taxtastic for placement (ex-
pected to be more accurate but slower), and Variant 2 uses BLASTN for aligning
reads and BSCAMPP with EPA-ng for placement (expected to be faster but
less accurate).

As seen in Figure S2, Variant 2 was the least accurate method. The compar-
ison between TIPP-SD and Variant 1 shows that Variant 1 had a small accuracy
advantage on the 50-genome conditions but they were tied all other conditions.
On the other hand, TIPP-SD was much faster and had lower memory usage than
Variant 1 (Figures S3 and S4), typically by 1-2 orders of magnitude. Given that
the accuracy improvement obtained by Variant 1 over TIPP-SD was small and
the increase in runtime and memory usage was very large, we selected TIPP-
SD for species detection. Henceforth, we report results using its settings in
subsequent experiments.

5.2.3 Selecting default detection threshold

We examined the F1 score with respect to marker confidence for all datasets
and showed the comparisons in the supplementary materials (Figure S5). Based
on the F1-marker confidence curve, we decided that a “conservative” threshold
of value ∼ 0.2 achieves a good F1 score over most conditions for TIPP-SD.
For higher sensitivity (recall), TIPP-SD can use a “sensitive” threshold of value
∼ 0.12. We show the precision and recall values of TIPP-SD based on the two
thresholds in the following experiments, alongside the precision-recall curve.

5.3 Experiment 2: Comparison to TIPP3, Bracken, and
Kraken2

This experiment compared TIPP-SD to TIPP3, Bracken, and Kraken2 used
for species detection, all of which require the use of a threshold to determine
which species are included in the list. Thus, the comparisons were based on
precision-recall curves. All methods were compared on the nine different model
conditions we explored.

5.3.1 Comparison to TIPP3

We compared TIPP3 to TIPP-SD on all the datasets. Results on the full set of
conditions are shown in Supplementary Materials Fig S1, and three conditions
are shown in Fig 2. By varying the threshold for abundance, we obtained
precision-recall curves for TIPP3. As seen in Fig 2, TIPP3 had poorer accuracy
(in particular, lower recall) than TIPP-SD. TIPP3 also has poorer accuracy
than TIPP-SD for all 1000 known species datasets, and matches TIPP-SD only
on the 50 known species datasets.
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5.3.2 Comparison to Kraken2 and Bracken

We studied the impact of filtering metagenomic reads based on the TIPP3
marker genes as input to Bracken and Kraken2. Bracken and Kraken2 had
better abundance profiling accuracy with filtered reads than all reads in the
TIPP3 study [38]. However, filtering reads had a mixed impact for species
detection with the two methods (Figure S6). Generally, using all reads as input
allowed both methods to achieve higher recalls but came at a cost to precision.
Therefore, henceforth we only show results for Bracken and Kraken2 using all
reads, denoted as Bracken(all) and Kraken2(all).

Figure 3 compares TIPP-SD, Kraken2, and Bracken for species detection
accuracy using precision-recall curves. Generally, TIPP-SD had better pre-
cision and recall than Bracken and Kraken2 with all reads, except for 1000
known species with Illumina reads. For 1000 known species with Illumina reads,
Bracken had a broader top right corner, but in many cases, it had lower precision
than TIPP-SD for the same recall.

Figures S7 and S8 compare the runtime and memory between TIPP-SD,
Bracken, and Kraken2. Kraken2 and Bracken both completed each dataset in
under an hour of running time. TIPP-SD was generally slower than Kraken2
and Bracken by about an order of magnitude, but still fast enough to complete
on all datasets in 0.5–8.6 hours with 16 CPU cores. TIPP-SD also had a much
lower memory usage, using 3–29 GBs compared to ∼ 72 GBs by Kraken2 and
Bracken.

5.4 Experiment 3: Comparison to Metapresence

Unlike Kraken2, Bracken, and TIPP-SD, Metapresence is based on a small
database, containing only 2000 species. To enable a fair comparison (see [6]),
we restricted TIPP-SD to a database of the same set of 2000 species as Metap-
resence, and we refer to the resultant method as TIPP-SD-2000.

We ran Metapresence on the 1000 known species datasets with three types
of metagenomic reads (Illumina, PacBio, and Nanopore). We created a Bowtie2
database with genomes of 2000 species, as described earlier in this study.

Figure 4 shows the precision-recall curves of TIPP-SD-2000 and Metapres-
ence on the three 1000 known species datasets. For Illumina reads, TIPP-SD-
2000 and Metapresence were similar in accuracy. For PacBio reads, however,
Metapresence had lower recall than TIPP-SD-2000, and the highest recall it
achieved was around 80%. For Nanopore reads, Metapresence had lower preci-
sion for the same recall value when compared to TIPP-SD-2000. At the right-
most side of the precision-recall curve, one can argue that Metapresence achieves
a higher precision than TIPP-SD-2000.

Precision and recall of Metapresence using its default threshold values (i.e.,
BER = 0.8, FUG = 0.5) are shown in each of the subfigures as black stars.
Using this default value, the precision was high for reads of all sequencing tech-
nologies, but the recall varied. While recall was very high (close to 100%)
for Illumina reads, the recall was low for both PacBio (less than 40%) and
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Figure 3: Precision-recall curves of TIPP-SD and Kraken2/Bracken using all
reads. The solid and hollow red stars show the precision and recall of TIPP-SD
using the “conservative” and “sensitive” thresholds, respectively.
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Figure 4: Precision-recall curves of Metapresence and TIPP-SD-2000 (i.e., we
use the TIPP3 reference package restricted to the same 2000 species as in Metap-
resence) on 1000 known species datasets with Illumina, PacBio, and Nanopore
reads. The black star in each subfigure shows the precision and recall using
the Metapresence default threshold (i.e., a species is considered present if and
only if BER ≥ 0.8 and FUG ≥ 0.5). The red solid and hollow stars show the
precision and recall of TIPP-SD-2000 using the “conservative” and “sensitive”
thresholds, respectively.

Nanopore (less than 65%). Red solid and hollow stars show the precision and
recall of TIPP-SD-2000 using the “conservative” and “sensitive” thresholds,
respectively. Precision was high for TIPP-SD-2000 while having better recall
than Metapresence, except for Illumina reads, where Metapresence achieved a
higher recall with lower precision than TIPP-SD-2000’s “conservative” value,
and similar performance as TIPP-SD-2000’s “sensitive” value.

We also compared the runtime and memory usage between TIPP-SD-2000
and Metapresence, on the three datasets of 1000 known species with Illumina,
PacBio, or Nanopore reads (Figure S9). We observed a noticeable jump in
Metapresence’s memory usage when dealing with long reads (e.g., PacBio and
Nanopore) compared to short reads (e.g., Illumina). This is likely due to how
Bowtie2 handles read alignment against its database, because Bowtie2 is de-
signed for short read alignment. Metapresence is faster than TIPP-SD-2000 on
Illumina reads, but slower on both PacBio and Nanopore reads.

5.5 Case study: analysis on false-positive species

Here we took a closer look at the detected species by Kraken2, Bracken, and
TIPP-SD and tried to understand the properties of their false positives, using
the 1000 known species dataset with Illumina, PacBio, and Nanopore reads
(center row in Figure 3).

False-positive species “closeness” to target species We looked at the
ANI of false-positive species to the “true” species in the 1000 known species
dataset with Illumina, PacBio, and Nanopore reads. This study is important
to understand if false positives of a method are closely related species to some
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target species, but have different taxonomic labels.
We used two recall thresholds to extract the list of reported species by each

method, at 90% and 95%. We then identified the falsely reported species and
computed their ANIs to the closest species among the target species using Fas-
tANI. We repeated this process for all tested datasets, but only show the results
at 95% for 1000 known species. Results at the 90% recall threshold show similar
trends and can be found in the supplementary materials, Figure S10.

At 95% recall (Figure 5) all sequencing technologies show similar trends.
TIPP-SD has the smallest number of false positives of all methods, followed by
Bracken, and then followed by Kraken2 (which has the largest number). For all
sequencing technologies, both Bracken and Kraken2 have false positives across
the range of ANI values between 80% and 100% (with Kraken2 having a larger
number of false positives at the lower end of this range than Bracken), while
TIPP-SD has the majority of its false positives at the upper end of the range.
Thus, overall, TIPP-SD shows fewer false positives than the other two methods,
and when it has false positives, they tend to be for species that have very similar
sequences.

With this analysis, note that although TIPP-SD may have no obvious ad-
vantage in Figure 3 on 1000 known genomes for Illumina reads, this more careful
evaluation shows that when TIPP-SD does report false positives, they tend to
have high ANI to the closest known species (suggesting that they are very closely
related), an advantage that Kraken2 and Bracken do not show here.

Initial drop in precision for Bracken and Kraken2 We observed an
initial drop in precision for the two methods when analyzing long reads. In the
case of PacBio long reads of 1000 known species, this drop in precision is very
noticeable for Bracken. We thus examined the top 10 reported species ranked
by the number of reads assigned for Bracken and Kraken2 and compared them
to the top 10 species reported by TIPP-SD ranked by marker confidence.

Table S2 (supplementary materials) shows the top 10 reported species by
Bracken, Kraken2, and TIPP-SD. Kraken2 has only one false positive in set
(Homo sapiens), Bracken has five false positives (Homo sapiens and four oth-
ers), and TIPP-SD has no false positives. It is noteworthy that both Kraken2
and Bracken reported Homo sapiens as one of the detected species, despite that
the input reads were only generated from Bacteria and Archaea genomes. Of
the four other false positives reported by Bracken, the one with the highest
reported threshold is E. coli, which has 98.2% ANI to its closest true positive
species. All others have lower ANI values to their closest true positive, ranging
from 82.5% to 93.0%. In sum, Bracken displayed possibly the most surprising
false positives of the three methods.

6 Discussion

This study presented TIPP-SD, a new method for species detection. TIPP-
SD has high accuracy, with improvements over TIPP3, Kraken2, Bracken, and
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(a) Illumina reads. (b) PacBio reads. (c) Nanopore reads.

Figure 5: At 95% recall, the distribution of average nucleotide identity (ANI)
of false-positive species to their closest species in the set of 1000 known species,
for Kraken2, Bracken, and TIPP-SD classifying Illumina (left), PacBio (middle),
and Nanopore (right) reads. The total number of false positives for each method
is shown in parentheses, with low = X meaning that there are X false positives
that do not have any close species in the target (i.e., ≪ 80% ANI according to
fastANI).
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Metapresence under most tested conditions. The improvement was most note-
worthy when there was sequencing error (e.g., PacBio and Nanopore reads) or
when some or all species had low abundance (e.g., on the 1000 genomes and on
the CAMI-II Marine dataset).

The advantage of TIPP-SD over the competing methods for these two con-
ditions (i.e., reads with sequencing error or low-abundance species) may be due
to its ability to use maximum likelihood phylogenetic placement and highly ac-
curate sequence alignments, rather than relying on k-mers. Sequencing depth,
or coverage, also has an impact on the methods’ relative and absolute accuracy.
Although we only examined Nanopore reads with a coverage of 1 and 10, we
observed that TIPP-SD has a better precision-recall curve when the coverage is
higher. In addition, its relative accuracy advantage over Bracken and Kraken2
also becomes more noticeable with higher coverage. We also demonstrated that
TIPP-SD is fast enough to run on large input data (∼ 36 GBs in FASTA for-
mat) in under 10 hours. Overall, TIPP-SD is a competitive method with both
reasonable speed and high accuracy for species detection.

The methods also differ in terms of their false positives. At high recall levels,
Bracken and Kraken2 often report false-positive species that have low ANIs to
any of the target species. TIPP-SD’s false positives generally have very high
ANIs (> 99%), indicating that they are more likely closely related to some
target species but have different taxonomic labels. These “false positives” are
hard to eliminate but are also not as undesirable as the ones with low ANIs.

This study suggests several directions for improving TIPP-SD. To improve
accuracy in species detection, we could expand the list of “top placements” pro-
vided by pplacer to more than its default, which is the top seven. We showed
results for TIPP-SD for species detection, but future work should examine re-
sults for detecting other taxonomic levels, such as genera, families, or even
strains. Although TIPP-SD had very good accuracy, it used the same set of
marker genes that were used in TIPP3, and a different set could be consid-
ered, given that the purpose of the analysis is different. In particular, we could
even consider genes that are not marker genes (i.e., not universal or multi-copy
rather than single-copy), given the changed objective. Although TIPP-SD is
reasonably fast, a better parallel implementation would speed it up.

Finally, although TIPP-SD did well in this study, its accuracy in comparison
to other methods should be explored under additional conditions. While our
study showed TIPP-SD had superior accuracy to Kraken2 and Bracken on all
datasets where some or all species had low abundance (i.e., 0.1% or less), a
more careful analysis of the ability to detect low abundance species is needed.
In addition, our evaluation of PacBio reads with high error rates is helpful in
understanding robustness to high sequencing error, but the new PacBio reads
have much lower sequencing error rates [7, 15]. Similarly, the newer Nanopore
technology also has somewhat lower sequencing error than what we examined in
our study [8]. We also note that hi-fi reads are increasingly of interest [10]. Thus,
future work should examine TIPP-SD under these new sequencing technologies.
Other future work includes testing TIPP-SD in comparison to Kraken2 and
Bracken on exactly the same set of genomes, and testing TIPP-SD when species
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in the input sample are not in the TIPP-SD database.
We close with a discussion about the relationship between abundance pro-

filing and species detection, two problems that are very related and both of
importance in microbiome analysis. One of the contributions of this study is
the observation that techniques that work well for abundance profiling are not
necessarily the best for species detection, and vice-versa. For example, [38]
established that filtering the input reads to just those that map to selected
marker genes (i.e., genes that are expected to be single copy and universal) re-
sults in improved estimates of the abundance profile for Kraken2, Bracken, and
other methods, but here we have shown that filtering is detrimental for Bracken
and Kraken2 when used for the species detection problem. Hence, abundance
profiling and species detection are different even though related problems, and
techniques that work well for one problem may not produce high accuracy for
the other problem. Therefore, the development of methods that are specifically
designed for each problem is appropriate.
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1 Additional details on experiment design

1.1 TIPP3 reference package raw data

TIPP-SD used the TIPP3 reference package, which was generated from the lists of assemblies
(Bacteria and Archaea) downloaded in TIPP2, and marker gene sequences were collected using
FetchMG. To download the latest lists of assembly from NCBI, use the following two links:

1. ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt

2. ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/assembly_summary.txt

1.2 Software commands

All software are given 16 cores and 256 GB of memory to run untill completion.

1. We ran Kraken2 (v2.1.3) with the following command:

1 $ kraken2 --db [Kraken2 database] \

2 --threads 16 --report [Kraken2 report] \

3 [query reads file] > [Kraken2 output]

2. We ran Bracken (v2.9) with the following command (using Kraken2 output):

1 $ bracken -d [Bracken database] -i [Kraken2 report] \

2 -w [Bracken report] -t 10 -r 150 \

3 -o [Bracken output]

3. We ran TIPP-SD and its variants with the following commands. --alignment-method con-
trols what method we used to align the reads, and --placement-method and --bscampp-mode

control what method we used for read placement.

1 $ run_tipp3.py abundance -i [query reads file] \

2 -r [reference package directory] --outdir [output directory] \

3 --alignment -method XXX \

4 --placement -method YYY \

5 --bscampp -mode ZZZ \

6 -t 16

Table S1: Parameter settings for each TIPP-SD variant.

Method --alignment-method --placement-method --bscampp-mode

TIPP-SD BLAST BSCAMPP pplacer
Variant 1 WITCH pplacer-taxtastic -
Variant 2 BLAST BSCAMPP EPA-ng

4. For Metapresence (v1.0), we first aligned the input reads using Bowtie2 (v2.5.4) and samtools
(v1.19.2):

1 $ bowtie2 -f [query reads file] -x [bowtie2 database index] -p 16 \

2 | samtools view -b -@ 16 \

3 | samtools sort -@ 16 > [bam alignment file]

We then indexed the bowtie2 alignment with samtools:

1 $ samtools index -@ 16 [bam alignment file]
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Finally, we ran metapresence to analyze the alignment results:

1 $ metapresence.py [reference genomes directory] [bam alignment file] \

2 -o [output prefix] -p 16

5. To compute average nucleotide identity (ANI) between two sets of genomes, we used fastANI
(v1.34) and the following command. Note that fastANI does not return comparisons that
have ≪ 80% ANI.

1 $ fastANI --ql [query list of genomes] --rl [target list of genomes] \

2 -o [output file] -t 16

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2025. ; https://doi.org/10.1101/2025.08.27.672749doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.27.672749
http://creativecommons.org/licenses/by/4.0/


2 Additional results

2.1 Additional results for Experiment 1

2.1.1 TIPP-SD vs. TIPP3

Figure S1: Precision/recall of TIPP-SD compared to TIPP3. TIPP3’s precision/recall curve is
obtained by setting thresholds on the abundance level, and only species with an abundance greater
than the threshold are considered as “detected” by TIPP3. Red stars mark the precision and recall
values of using the “conservative” (solid) and “sensitive” (hollow) threshold values for TIPP-SD.
While TIPP3 matches the precision and recall of TIPP-SD for the 50 genome case, it is less accurate
for larger numbers of genomes.
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2.1.2 TIPP-SD variants

Figure S2: Precision/recall of TIPP-SD, Variant 1, and Variant 2 using marker confidence as the
species detection strategy. Variant 1 was not run for Nanopore reads of 1000 known species with
a coverage of 10, due to the long running time. Red stars mark the precision and recall values of
using the “conservative” (solid) and “sensitive” (hollow) threshold values for TIPP-SD. See Table
S1 for definitions of TIPP-SD variants.
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Figure S3: Runtime in hours (in log-scale) of TIPP-SD, Variant 1, and Variant 2. Variant 1 was
not run for Nanopore reads of 1000 known species with a coverage of 10, due to the long running
time.
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Figure S4: Memory usage in GBs of TIPP-SD, Variant 1, and Variant 2. Variant 1 was not run
for Nanopore reads of 1000 known species with a coverage of 10, due to the long running time.

2.1.3 Selecting default detection threshold

Figure S5 shows the marker confidence to F1 score of TIPP-SD, Variant 1, and Variant 2 on the
tested datasets. For the easy datasets (i.e., high coverage and/or Illumina reads), a wide range of
marker confidence values leads to high F1 scores.

Generally, for 50 known genomes, the peak F1 score happened when marker confidence was 0.3–
0.6 for Illumina reads, 0.2–0.3 for PacBio reads, and 0.2–0.3 for Nanopore reads. For 1000 known
genomes with a coverage of 1, the peak F1 score happened when marker confidence was 0.2–0.3
for Illumina, 0.1–0.2 for PacBio, and 0.1–0.2 for Nanopore reads. For 1000 known genomes with
Nanopore reads and a coverage of 10, the range of marker confidence for peak F1 score widened
to 0.2–0.4. Finally, for CAMI-II Illumina reads, the marker confidence range is 0.2–0.5, and for
PacBio reads, the range is 0.1–0.2.

The overall trends suggest that a threshold around 0.2 should be accurate for most conditions.
When the dataset is “easy” (e.g., Illumina reads or high coverage), larger thresholds (e.g., around
0.6) are more suitable, but when the dataset is “difficult” (e.g., low coverage or Pacbio reads), then
a lower threshold (e.g., around 0.2) is needed.
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Figure S5: Marker confidence (x-axis) to F1 score (y-axis) of TIPP-SD, Variant 1, Variant 2 on the
examined datasets. F1 score is computed as 2·precision·recall

precision+recall , a measurement between 0 and 1 on
the quality of both precision and recall. Variant 1 was not run for Nanopore reads of 1000 known
species with a coverage of 10, due to the long running time.
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2.2 Additional results for Experiment 2

2.2.1 Filtering vs. all reads

Figure S6 compares Kraken2 and Bracken when using all or filtered reads as input for species
detection. When dealing with 50 known genomes, both Kraken2 and Bracken with filtered reads
have very high accuracy, showing almost perfect precision/recall curves. Kraken2 and Bracken,
with all reads on 50 known genomes, have a drop in precision for the same level of recall when
compared to their variants with filtered reads.

However, the results with 1000 species with a coverage of 1 are slightly different. Generally,
both Kraken and Bracken achieve better recall with all reads as input than with filtered reads.
Precision is slightly higher for using filtered reads at low levels of recall, but drops at higher values.
Comparing a coverage of 1 and 10 for the Nanopore reads, Kraken2(filtered) and Bracken(filtered)
improve in their recall, but the impact on the performance of Kraken2(all) and Bracken(all) is not
as noticeable.

For CAMI-II datasets, for Illumina reads, Kraken2(filtered) improves upon Kraken2(all) in
terms of precision, but Bracken(filtered) and Bracken(all) have similar performance for both preci-
sion and recall. For PacBio reads, Bracken(filtered) has high precision but low recall. Kraken2(all)
achieves higher precision than Bracken(all) with similar recall.

In conclusion, for the task of species detection, if the focus is to achieve a high recall, we
recommend running with all reads as inputs for Bracken and Kraken2, as it generally leads to
better recall.
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Figure S6: Precision/recall of Kraken2 and Bracken using all or filtered reads as input. For filtered
reads, the lines are dashed.
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2.2.2 Runtime and memory

Figure S7: Runtime in hours (in log-scale) of TIPP-SD and Kraken2/Bracken using all reads.
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Table S2: The top 10 reported species of Kraken2, Bracken, and TIPP-SD when classifying PacBio
reads of 1000 known species. The “reported threshold” for Kraken2 and Bracken is ranked by the
number of reads assigned to a species, and for TIPP-SD, this is the marker confidence value. The
“presence” column denotes whether the species is a true positive.

Kraken2 Bracken TIPP-SD

Species Taxid
Reported
Threshold

Presence Species Taxid
Reported
Threshold

Presence Species Taxid
Reported
Threshold

Presence

H. sapiens 9606 6973 FALSE P. larvae 1464 28749 TRUE D. nodosus 870 0.74 TRUE

S. acidiphila 466153 1922 TRUE E. coli 562 10301 FALSE L. pinisoli 2589080 0.71 TRUE

Streptomyces
sp. YIM 121038

2136401 1854 TRUE H. sapiens 9606 8462 FALSE
Verrucomicrobium

sp. GAS474
1882831 0.67 TRUE

S. griseochromogenes 68214 1838 TRUE D. acidovorans 80866 5130 TRUE V. quintilis 1117707 0.66 TRUE

M. ossetica 1882682 1810 TRUE B. ambifaria 152480 3264 FALSE P. borealis 1387353 0.66 TRUE

T. plasticadhaerens 2527974 1809 TRUE
Rhizobium
sp. N1341

1703962 3251 TRUE M. bathoardescens 1301915 0.66 TRUE

N. koreensis 354356 1794 TRUE P. aeruginosa 287 2911 FALSE P. inopinatus 114090 0.65 TRUE

S. venezuelae 54571 1721 TRUE B. cereus 1396 2523 TRUE N. ponticola 2496866 0.65 TRUE

S. espanaensis 103731 1690 TRUE
Streptomyces

sp. CRLD-Y-1
2964608 2455 FALSE C. papalotli 1208583 0.65 TRUE

Actinoplanes
sp. N902-109

649831 1661 TRUE S. venezuelae 54571 2146 TRUE Pigmentiphaga aceris 1940612 0.63 TRUE

Figure S8: Memory usage in GBs of TIPP-SD and Kraken2/Bracken using all reads.
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2.3 Additional results for Experiment 3

2.3.1 Runtime and memory

(a) Runtime in hours (log-scale).

(b) Memory in GBs.

Figure S9: Runtime and memory usage of TIPP-SD-2000 and Metapresence on 1000 known species
datasets with Illumina, PacBio, and Nanopore reads. Coverages for the 1000 species datasets are
1.
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2.4 Additional results for the case study

(a) Illumina reads. (b) PacBio reads. (c) Nanopore reads.

Figure S10: At 90% recall, the distribution of average nucleotide identity (ANI) of false-positive
species to their closest species in the set of 1000 known species, for Kraken2, Bracken, and TIPP-SD
classifying Illumina (left), PacBio (middle), and Nanopore (right) reads. The total number of false
positives for each method is shown in parentheses, with low = X meaning that there are X false
positives that do not have any close species in the target (i.e., ≪ 80% ANI according to fastANI).
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